Provided by: ants_2.2.0-1ubuntu1_amd64 bug

NAME

       ANTS - part of ANTS registration suite

DESCRIPTION

   COMMAND:
              ANTS

   OPTIONS:
       -x, --mask-image maskFileName

              this mask -- defined in the 'fixed' image space defines the region of interest over
              which the registration is computed ==> above 0.1 means inside mask  ==>  continuous
              values  in  range  [0.1,1.0] effect optimization like a probability. ==> values > 1
              are treated as = 1.0

       -m, --image-metric

              The metric weights are relative to the weights on the N  other  metrics  passed  to
              ANTS  --- N is unlimited. So, the weight, w_i on the i^{th} metric will be w_i=w_i/
              ( sum_i w_i ).Intensity-Based Metrics:

              CC/cross-correlation/CrossCorrelation[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]
              MI/mutual-information/MutualInformation[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]
              SMI/spatial-mutual-information/SpatialMutualInformation[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]
              PR/probabilistic/Probabilistic[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]
              SSD

       ---                                   standard                                   intensity
       difference.[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]

              MSQ/mean-squares/MeanSquares

       -- demons-like, radius > 0 uses moving image gradient in metric

              deriv.[fixedImage,movingImage,weight,radius/OrForMI-#histogramBins]

              Point-Set-Based Metrics:

              PSE/point-set-expectation/PointSetExpectation[fixedImage,movingImage,fixedPoints,movingPoints,weight,pointSetPercentage,pointSetSigma,boundaryPointsOnly,kNeighborhood,

       PartialMatchingIterations=100000]

              the partial matching option assumes the

              complete labeling is in the first set of label parameters ... more iterations leads
              to more symmetry in the matching - 0 iterations means full asymmetry

              [fixedImage,movingImage,fixedPoints,movingPoints,weight,pointSetPercentage,pointSetSigma,boundaryPointsOnly,kNeighborhood,alpha,meshResolution,splineOrder,numberOfLevels,useAnisotropicCovariances]

       -o, --output-naming

              The name for the output - a prefix or a name+type : e.g. -o OUT or -o OUT.nii or -o
              OUT.mha

       --R

              TODO/FIXME:  the  --R  sets  an ROI option -- it passes a vector of parameters that
              sets the center and bounding box

              of the region of interest for a sub-field

              registration. e.g. in 3D the option setting

       -r 10x12x15x50x50x25

              sets up a

              bounding box of size 50,50,25 with origin at 10,12,15  in  voxel  (should  this  be
              physical?) coordinates.  <VALUES>: 0

       -i, --number-of-iterations

              number of iterations per level -- a 'vector' e.g. : 100x100x20 <VALUES>: 10x10x5

       --Restrict-Deformation

              restrict the gradient that drives the deformation by scalar factors along specified
              dimensions -- a TReal 'vector' of length ImageDimension  to  multiply  against  the
              similarity  metric's  gradient  values  --- e.g. in 3D : 0.1x1x0 --- will set the z
              gradient to zero and scale the x gradient by 0.1 and y by 1 (no change). Thus,  you
              get  a 2.5-Dimensional registration as there is still 3D continuity in the mapping.
              <VALUES>: 1x1

       -v, --verbose

              verbose output

       --use-all-metrics-for-convergence

              enable to use weighted sum of all metric  terms  for  convergence  computation.  By
              default, only the first metric is used <VALUES>: 0

       -h

              Print the help menu (short version).  <VALUES>: 0

       --help

              Print the help menu.  <VALUES>: 1, 0

       -t, --transformation-model

       TRANSFORMATION[gradient-step-length,number-of-time-steps,DeltaTime,symmetry-type].

       Choose one of the following TRANSFORMATIONS:

              Diff = diffeomorphic Elast =

              Elastic

              Exp = exponential diff

              Greedy Exp = greedy exponential diff, like

              diffeomorphic demons. same parameters.

              SyN -- symmetric normalization

              DeltaTime  is  the  integration time-discretization step - sub-voxel - n-time steps
              currently fixed at 2 <VALUES>: SyN[0.5]

       -r, --regularization

              REGULARIZATION[gradient-field-sigma,def-field-sigma,truncation].

              Choose one of

              the following REGULARIZATIONS:

              Gauss = gaussian DMFFD = directly manipulated

              free form deformation <VALUES>: Gauss[3,0.5]

       -a, --initial-affine

              use the input file as the initial affine parameter

       -F, --fixed-image-initial-affine

              use the input file as the initial affine parameter for the fixed image

       --fixed-image-initial-affine-ref-image

              reference space for using the input file as the initial affine  parameter  for  the
              fixed image

       -T, --geodesic

              = 0 / 1 / 2, 0 = not time-dependent, 1 = asymmetric , 2 = symmetric

       -G, --go-faster

              true / false -- if true, SyN is faster but loses some accuracy wrt inverse-identity
              constraint, see Avants MIA 2008.  <VALUES>: false

       --continue-affine

              true (default) | false, do (not) perform affine given the initial affine parameters
              <VALUES>: true

       --number-of-affine-iterations

              number  of  iterations  per  level  --  a  'vector'  e.g.  :  100x100x20  <VALUES>:
              10000x10000x10000

       --use-NN

              use nearest neighbor interpolation <VALUES>: 0

       --use-Histogram-Matching

              use histogram matching of moving to fixed image <VALUES>: 0

       --affine-metric-type

              MI: mutual information (default), MSQ:  mean  square  error,  SSD,  CC:  Normalized
              correlation,  CCH:  Histogram-based  correlation coefficient (not recommended), GD:
              gradient difference (not recommended) <VALUES>: MI

       --MI-option

              option of mutual information: MI_bins x MI_samples  (default:  32x32000)  <VALUES>:
              32x5000

       --rigid-affine

              use rigid transformation : true / false(default) <VALUES>: false

       --do-rigid

              use rigid transformation : true / false(default) <VALUES>: false

       --affine-gradient-descent-option

              option   of  gradient  descent  in  affine  transformation:  maximum_step_length  x
              relaxation_factor   x   minimum_step_length    x    translation_scales    <VALUES>:
              0.1x0.5x1.e-4x1.e-4

       --use-rotation-header

              use rotation matrix in image headers: true (default) / false <VALUES>: false

       --ignore-void-origin

              ignore  the apparently unmatched origins (when use-rotation-header is false and the
              rotation matrix is identity: true (default) / false <VALUES>: false

       --gaussian-smoothing-sigmas

              At each  resolution  level  the  image  is  subsampled  and  smoothed  by  Gaussian
              convolution.  This  option  allows  the  user  to override the default smoothing by
              specifying sigma values (in mm) for smoothing both fixed and moving images for each
              resolution level.  <VALUES>:

       --subsampling-factors

              At  each  resolution  level  the  image  is  subsampled  and  smoothed  by Gaussian
              convolution. This option allows the user to override  the  default  subsampling  by
              specifying  the  subsampling  factor  for  both  fixed  and  moving images for each
              resolution level.  <VALUES>: