Provided by: libssl-doc_1.1.0g-2ubuntu4_all bug


       EC_POINT_set_Jprojective_coordinates_GFp, EC_POINT_point2buf, EC_POINT_new, EC_POINT_free,
       EC_POINT_clear_free, EC_POINT_copy, EC_POINT_dup, EC_POINT_method_of,
       EC_POINT_set_to_infinity, EC_POINT_get_Jprojective_coordinates_GFp,
       EC_POINT_set_affine_coordinates_GFp, EC_POINT_get_affine_coordinates_GFp,
       EC_POINT_set_compressed_coordinates_GFp, EC_POINT_set_affine_coordinates_GF2m,
       EC_POINT_get_affine_coordinates_GF2m, EC_POINT_set_compressed_coordinates_GF2m,
       EC_POINT_point2oct, EC_POINT_oct2point, EC_POINT_point2bn, EC_POINT_bn2point,
       EC_POINT_point2hex, EC_POINT_hex2point - Functions for creating, destroying and
       manipulating EC_POINT objects


        #include <openssl/ec.h>

        EC_POINT *EC_POINT_new(const EC_GROUP *group);
        void EC_POINT_free(EC_POINT *point);
        void EC_POINT_clear_free(EC_POINT *point);
        int EC_POINT_copy(EC_POINT *dst, const EC_POINT *src);
        EC_POINT *EC_POINT_dup(const EC_POINT *src, const EC_GROUP *group);
        const EC_METHOD *EC_POINT_method_of(const EC_POINT *point);
        int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point);
        int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                     EC_POINT *p,
                                                     const BIGNUM *x, const BIGNUM *y,
                                                     const BIGNUM *z, BN_CTX *ctx);
        int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group,
                                                     const EC_POINT *p,
                                                     BIGNUM *x, BIGNUM *y, BIGNUM *z,
                                                     BN_CTX *ctx);
        int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *p,
                                                const BIGNUM *x, const BIGNUM *y,
                                                BN_CTX *ctx);
        int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
                                                const EC_POINT *p,
                                                BIGNUM *x, BIGNUM *y, BN_CTX *ctx);
        int EC_POINT_set_compressed_coordinates_GFp(const EC_GROUP *group,
                                                    EC_POINT *p,
                                                    const BIGNUM *x, int y_bit,
                                                    BN_CTX *ctx);
        int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, EC_POINT *p,
                                                 const BIGNUM *x, const BIGNUM *y,
                                                 BN_CTX *ctx);
        int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group,
                                                 const EC_POINT *p,
                                                 BIGNUM *x, BIGNUM *y, BN_CTX *ctx);
        int EC_POINT_set_compressed_coordinates_GF2m(const EC_GROUP *group,
                                                     EC_POINT *p,
                                                     const BIGNUM *x, int y_bit,
                                                     BN_CTX *ctx);
        size_t EC_POINT_point2oct(const EC_GROUP *group, const EC_POINT *p,
                                  point_conversion_form_t form,
                                  unsigned char *buf, size_t len, BN_CTX *ctx);
        size_t EC_POINT_point2buf(const EC_GROUP *group, const EC_POINT *point,
                                  point_conversion_form_t form,
                                  unsigned char **pbuf, BN_CTX *ctx);
        int EC_POINT_oct2point(const EC_GROUP *group, EC_POINT *p,
                               const unsigned char *buf, size_t len, BN_CTX *ctx);
        BIGNUM *EC_POINT_point2bn(const EC_GROUP *group, const EC_POINT *p,
                                  point_conversion_form_t form, BIGNUM *bn,
                                  BN_CTX *ctx);
        EC_POINT *EC_POINT_bn2point(const EC_GROUP *group, const BIGNUM *bn,
                                    EC_POINT *p, BN_CTX *ctx);
        char *EC_POINT_point2hex(const EC_GROUP *group, const EC_POINT *p,
                                 point_conversion_form_t form, BN_CTX *ctx);
        EC_POINT *EC_POINT_hex2point(const EC_GROUP *group, const char *hex,
                                     EC_POINT *p, BN_CTX *ctx);


       An EC_POINT structure represents a point on a curve. A new point is constructed by calling
       the function EC_POINT_new() and providing the group object that the point relates to.

       EC_POINT_free() frees the memory associated with the EC_POINT.  if point is NULL nothing
       is done.

       EC_POINT_clear_free() destroys any sensitive data held within the EC_POINT and then frees
       its memory. If point is NULL nothing is done.

       EC_POINT_copy() copies the point src into dst. Both src and dst must use the same

       EC_POINT_dup() creates a new EC_POINT object and copies the content from src to the newly
       created EC_POINT object.

       EC_POINT_method_of() obtains the EC_METHOD associated with point.

       A valid point on a curve is the special point at infinity. A point is set to be at
       infinity by calling EC_POINT_set_to_infinity().

       The affine co-ordinates for a point describe a point in terms of its x and y position. The
       functions EC_POINT_set_affine_coordinates_GFp() and EC_POINT_set_affine_coordinates_GF2m()
       set the x and y co-ordinates for the point p defined over the curve given in group.

       As well as the affine co-ordinates, a point can alternatively be described in terms of its
       Jacobian projective co-ordinates (for Fp curves only). Jacobian projective co-ordinates
       are expressed as three values x, y and z. Working in this co-ordinate system provides more
       efficient point multiplication operations.  A mapping exists between Jacobian projective
       co-ordinates and affine co-ordinates. A Jacobian projective co-ordinate (x, y, z) can be
       written as an affine co-ordinate as (x/(z^2), y/(z^3)). Conversion to Jacobian projective
       from affine co-ordinates is simple. The co-ordinate (x, y) is mapped to (x, y, 1). To set
       or get the projective co-ordinates use EC_POINT_set_Jprojective_coordinates_GFp() and
       EC_POINT_get_Jprojective_coordinates_GFp() respectively.

       Points can also be described in terms of their compressed co-ordinates. For a point (x,
       y), for any given value for x such that the point is on the curve there will only ever be
       two possible values for y. Therefore a point can be set using the
       EC_POINT_set_compressed_coordinates_GFp() and EC_POINT_set_compressed_coordinates_GF2m()
       functions where x is the x co-ordinate and y_bit is a value 0 or 1 to identify which of
       the two possible values for y should be used.

       In addition EC_POINT can be converted to and from various external representations. The
       octet form is the binary encoding of the ECPoint structure (as defined in RFC5480 and used
       in certificates and TLS records): only the content octets are present, the OCTET STRING
       tag and length are not included. BIGNUM form is the octet form interpreted as a big endian
       integer converted to a BIGNUM structure. Hexadecimal form is the octet form converted to a
       NULL terminated character string where each character is one of the printable values 0-9
       or A-F (or a-f).

       The functions EC_POINT_point2oct(), EC_POINT_oct2point(), EC_POINT_point2bn(),
       EC_POINT_bn2point(), EC_POINT_point2hex() and EC_POINT_hex2point() convert from and to
       EC_POINTs for the formats: octet, BIGNUM and hexadecimal respectively.

       The function EC_POINT_point2oct() must be supplied with a buffer long enough to store the
       octet form. The return value provides the number of octets stored.  Calling the function
       with a NULL buffer will not perform the conversion but will still return the required
       buffer length.

       The function EC_POINT_point2buf() allocates a buffer of suitable length and writes an
       EC_POINT to it in octet format. The allocated buffer is written to *pbuf and its length is
       returned. The caller must free up the allocated buffer with a call to OPENSSL_free().
       Since the allocated buffer value is written to *pbuf the pbuf parameter MUST NOT be NULL.

       The function EC_POINT_point2hex() will allocate sufficient memory to store the hexadecimal
       string. It is the caller's responsibility to free this memory with a subsequent call to


       EC_POINT_new() and EC_POINT_dup() return the newly allocated EC_POINT or NULL on error.

       The following functions return 1 on success or 0 on error: EC_POINT_copy(),
       EC_POINT_set_to_infinity(), EC_POINT_set_Jprojective_coordinates_GFp(),
       EC_POINT_get_Jprojective_coordinates_GFp(), EC_POINT_set_affine_coordinates_GFp(),
       EC_POINT_get_affine_coordinates_GFp(), EC_POINT_set_compressed_coordinates_GFp(),
       EC_POINT_set_affine_coordinates_GF2m(), EC_POINT_get_affine_coordinates_GF2m(),
       EC_POINT_set_compressed_coordinates_GF2m() and EC_POINT_oct2point().

       EC_POINT_method_of returns the EC_METHOD associated with the supplied EC_POINT.

       EC_POINT_point2oct() and EC_point2buf() return the length of the required buffer or 0 on

       EC_POINT_point2bn() returns the pointer to the BIGNUM supplied, or NULL on error.

       EC_POINT_bn2point() returns the pointer to the EC_POINT supplied, or NULL on error.

       EC_POINT_point2hex() returns a pointer to the hex string, or NULL on error.

       EC_POINT_hex2point() returns the pointer to the EC_POINT supplied, or NULL on error.


       crypto(7), EC_GROUP_new(3), EC_GROUP_copy(3), EC_POINT_add(3), EC_KEY_new(3),
       EC_GFp_simple_method(3), d2i_ECPKParameters(3)


       Copyright 2013-2017 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the OpenSSL license (the "License").  You may not use this file except in
       compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <>.