Provided by: postgresql-10_10.5-1_amd64 bug


       pg_test_timing - measure timing overhead


       pg_test_timing [option...]


       pg_test_timing is a tool to measure the timing overhead on your system and confirm that
       the system time never moves backwards. Systems that are slow to collect timing data can
       give less accurate EXPLAIN ANALYZE results.


       pg_test_timing accepts the following command-line options:

       -d duration
           Specifies the test duration, in seconds. Longer durations give slightly better
           accuracy, and are more likely to discover problems with the system clock moving
           backwards. The default test duration is 3 seconds.

           Print the pg_test_timing version and exit.

           Show help about pg_test_timing command line arguments, and exit.


   Interpreting results
       Good results will show most (>90%) individual timing calls take less than one microsecond.
       Average per loop overhead will be even lower, below 100 nanoseconds. This example from an
       Intel i7-860 system using a TSC clock source shows excellent performance:

           Testing timing overhead for 3 seconds.
           Per loop time including overhead: 35.96 ns
           Histogram of timing durations:
             < us   % of total      count
                1     96.40465   80435604
                2      3.59518    2999652
                4      0.00015        126
                8      0.00002         13
               16      0.00000          2

       Note that different units are used for the per loop time than the histogram. The loop can
       have resolution within a few nanoseconds (ns), while the individual timing calls can only
       resolve down to one microsecond (us).

   Measuring executor timing overhead
       When the query executor is running a statement using EXPLAIN ANALYZE, individual
       operations are timed as well as showing a summary. The overhead of your system can be
       checked by counting rows with the psql program:

           CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
           SELECT COUNT(*) FROM t;

       The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE
       version takes 16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference
       means the timing overhead per row is 68 ns, about twice what pg_test_timing estimated it
       would be. Even that relatively small amount of overhead is making the fully timed count
       statement take almost 70% longer. On more substantial queries, the timing overhead would
       be less problematic.

   Changing time sources
       On some newer Linux systems, it's possible to change the clock source used to collect
       timing data at any time. A second example shows the slowdown possible from switching to
       the slower acpi_pm time source, on the same system used for the fast results above:

           # cat /sys/devices/system/clocksource/clocksource0/available_clocksource
           tsc hpet acpi_pm
           # echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
           # pg_test_timing
           Per loop time including overhead: 722.92 ns
           Histogram of timing durations:
             < us   % of total      count
                1     27.84870    1155682
                2     72.05956    2990371
                4      0.07810       3241
                8      0.01357        563
               16      0.00007          3

       In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That's 1061 ns of
       timing overhead, again a small multiple of what's measured directly by this utility. That
       much timing overhead means the actual query itself is only taking a tiny fraction of the
       accounted for time, most of it is being consumed in overhead instead. In this
       configuration, any EXPLAIN ANALYZE totals involving many timed operations would be
       inflated significantly by timing overhead.

       FreeBSD also allows changing the time source on the fly, and it logs information about the
       timer selected during boot:

           # dmesg | grep "Timecounter"
           Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
           Timecounter "i8254" frequency 1193182 Hz quality 0
           Timecounters tick every 10.000 msec
           Timecounter "TSC" frequency 2531787134 Hz quality 800
           # sysctl kern.timecounter.hardware=TSC
           kern.timecounter.hardware: ACPI-fast -> TSC

       Other systems may only allow setting the time source on boot. On older Linux systems the
       "clock" kernel setting is the only way to make this sort of change. And even on some more
       recent ones, the only option you'll see for a clock source is "jiffies". Jiffies are the
       older Linux software clock implementation, which can have good resolution when it's backed
       by fast enough timing hardware, as in this example:

           $ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
           $ dmesg | grep time.c
           time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
           time.c: Detected 2400.153 MHz processor.
           $ pg_test_timing
           Testing timing overhead for 3 seconds.
           Per timing duration including loop overhead: 97.75 ns
           Histogram of timing durations:
             < us   % of total      count
                1     90.23734   27694571
                2      9.75277    2993204
                4      0.00981       3010
                8      0.00007         22
               16      0.00000          1
               32      0.00000          1

   Clock hardware and timing accuracy
       Collecting accurate timing information is normally done on computers using hardware clocks
       with various levels of accuracy. With some hardware the operating systems can pass the
       system clock time almost directly to programs. A system clock can also be derived from a
       chip that simply provides timing interrupts, periodic ticks at some known time interval.
       In either case, operating system kernels provide a clock source that hides these details.
       But the accuracy of that clock source and how quickly it can return results varies based
       on the underlying hardware.

       Inaccurate time keeping can result in system instability. Test any change to the clock
       source very carefully. Operating system defaults are sometimes made to favor reliability
       over best accuracy. And if you are using a virtual machine, look into the recommended time
       sources compatible with it. Virtual hardware faces additional difficulties when emulating
       timers, and there are often per operating system settings suggested by vendors.

       The Time Stamp Counter (TSC) clock source is the most accurate one available on current
       generation CPUs. It's the preferred way to track the system time when it's supported by
       the operating system and the TSC clock is reliable. There are several ways that TSC can
       fail to provide an accurate timing source, making it unreliable. Older systems can have a
       TSC clock that varies based on the CPU temperature, making it unusable for timing. Trying
       to use TSC on some older multicore CPUs can give a reported time that's inconsistent among
       multiple cores. This can result in the time going backwards, a problem this program checks
       for. And even the newest systems can fail to provide accurate TSC timing with very
       aggressive power saving configurations.

       Newer operating systems may check for the known TSC problems and switch to a slower, more
       stable clock source when they are seen. If your system supports TSC time but doesn't
       default to that, it may be disabled for a good reason. And some operating systems may not
       detect all the possible problems correctly, or will allow using TSC even in situations
       where it's known to be inaccurate.

       The High Precision Event Timer (HPET) is the preferred timer on systems where it's
       available and TSC is not accurate. The timer chip itself is programmable to allow up to
       100 nanosecond resolution, but you may not see that much accuracy in your system clock.

       Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer,
       which Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide
       300 nanosecond resolution.

       Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the
       real-time clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and
       the Cyclone timer. These timers aim for millisecond resolution.