Provided by: stilts_3.1.5-1_all bug

NAME

       stilts-plot2time - Draws a time plot

SYNOPSIS

       stilts plot2time [xpix=<int-value>] [ypix=<int-value>]
                        [insets=<top>,<left>,<bottom>,<right>] [omode=swing|out|cgi|discard|auto]
                        [storage=simple|cache|basic-cache] [seq=<suffix>[,...]]
                        [legend=true|false] [legborder=true|false] [legopaque=true|false]
                        [legseq=<suffix>[,...]] [legpos=<xfrac,yfrac>] [title=<value>]
                        [auxmap=<map-name>|<color>-<color>[-<color>...]] [auxclip=<lo>,<hi>]
                        [auxflip=true|false] [auxquant=<number>] [auxfunc=log|linear|sqrt|square]
                        [auxmin=<number>] [auxmax=<number>] [auxlabel=<text>] [auxcrowd=<factor>]
                        [auxwidth=<pixels>] [auxvisible=true|false] [forcebitmap=true|false]
                        [compositor=0..1] [animate=<table>] [afmt=<in-format>]
                        [astream=true|false] [acmd=<cmds>] [parallel=<int-value>]
                        [ylog=true|false] [yflip=true|false] [tlabel=<text>] [ylabel=<text>]
                        [grid=true|false] [tcrowd=<number>] [ycrowd=<number>]
                        [tformat=iso-8601|year|mjd|unix] [minor=true|false]
                        [texttype=plain|antialias|latex] [fontsize=<int-value>]
                        [fontstyle=standard|serif|mono]
                        [fontweight=plain|bold|italic|bold_italic] [tmin=<year-or-iso8601>]
                        [tmax=<year-or-iso8601>] [tsub=<lo>,<hi>] [ymin=<number>] [ymax=<number>]
                        [ysub=<lo>,<hi>] [navaxes=t|y|ty] [zoomfactor=<number>]
                        [leglabelN=<text>] [layerN=<layer-type> <layerN-specific-params>]
                        [zoneN=<text>]

DESCRIPTION

       plot2time  draws  plots  where  the  horizontal axis represents time. The time axis can be
       labelled in various different ways including MJD, decimal year and ISO-8601 form.

       Positional coordinates are  specified  as  t,  y  pairs,  e.g.:  plot2time  in1=series.cdf
       layer1=line t1=EPOCH y1=ENERGY

       This  command,  unlike  the  other plot2* commands at time of writing, can be used to draw
       multi-zone plots. These are  plots  with  different  panels  stacked  vertically  so  that
       different  datasets  can share the same horizontal (time) axis, but have separate vertical
       axes, colour maps, legends etc. The horizontal axes are always synchronized between zones.
       This  is  currently controlled with the zoneN parameter. For any layer with a layer suffix
       N, you can specify a zone identifier as an arbitrary string, Z, by supplying the parameter
       zoneN=Z. Layers with the same value of zoneN are plotted in the same zone, and layers with
       different values are plotted in different zones. If  no  zoneN  is  given,  the  layer  is
       assigned to a single (unnamed) zone, so with no zone parameters specified all plots appear
       in a single zone. Parameters specific to a given zone can then be suffixed with the same Z
       zone identifier. The examples section illustrates what this looks like in practice.

       Note:  this  plot  type,  and  the  multi-zone  feature,  is  experimental.  As  currently
       implemented it lacks some important features. The interface may be  changed  in  a  future
       version.

       Content  is  added  to  the  plot  by  specifying one or more plot layers using the layerN
       parameter. The N part is a suffix applied to all the parameters affecting a  given  layer;
       any  suffix  (including the empty string) may be used. Available layers for this plot type
       are: mark,  line,  linearfit,  fill,  quantile,  grid,  histogram,  kde,  knn,  densogram,
       gaussian, yerror, spectrogram, label, function.

OPTIONS

       xpix=<int-value>
              Size  of the output image in the X direction in pixels. This includes space for any
              axis labels, padding and other decoration outside the plot area  itself.  See  also
              insets.

       ypix=<int-value>
              Size  of the output image in the Y direction in pixels. This includes space for any
              axis labels, padding and other decoration outside the plot area  itself.  See  also
              insets.

       insets=<top>,<left>,<bottom>,<right>
              Defines  the  amount of space in pixels around the actual plotting area. This space
              is used for axis labels, and other decorations and any left  over  forms  an  empty
              border.

              The  size  and position of the actual plotting area is determined by this parameter
              along with xpix and ypix.

              The   value   of    this    parameter    is    4    comma    separated    integers:
              <top>,<left>,<bottom>,<right>.  Any  or  all  of these values may be left blank, in
              which case the corresponding margin will be calculated automatically  according  to
              how much space is required.

       omode=swing|out|cgi|discard|auto
              Determines how the drawn plot will be output, see SUN/256.

                * swing:  Plot  will be displayed in a window on the screen. This plot is "live";
                  it can be resized and (except for old-style plots) navigated around with  mouse
                  actions in the same way as plots in TOPCAT.

                * out:  Plot  will  be  written  to a file given by out using the graphics format
                  given by ofmt.

                * cgi: Plot will be written in a way suitable for  CGI  use  direct  from  a  web
                  server.  The  output  is  in  the  graphics format given by ofmt, preceded by a
                  suitable "Content-type" declaration.

                * discard: Plot is drawn, but discarded. There is no output.

                * auto: Behaves as swing or out mode depending on presence of out parameter

       storage=simple|cache|basic-cache
              Determines the way that data is accessed when constructing the plot. There are  two
              basic options, cached or not.

              If  no  caching is used (simple) then rows are read sequentially from the specified
              input table(s) every time they are required. This generally requires a small memory
              footprint (though that can depend on how the table is specified) and makes sense if
              the data only needs to be scanned once or perhaps if the table is very large.

              If caching is used (cache) then the required data is read once from  the  specified
              input  table(s)  and  cached  before  any plotting is performed, and plots are done
              using this cached data. This may use a  significant  amount  of  memory  for  large
              tables  but it's usually more sensible (faster) if the data will need to be scanned
              multiple times.

              The default value is cache if a live plot is being generated  (omode=swing),  since
              in  that  case  the  plot  needs  to  be  redrawn every time the user performs plot
              navigation actions or resizes the window, or  if  animations  are  being  produced.
              Otherwise (e.g. output to a graphics file) the default is simple.

       seq=<suffix>[,...]
              Contains  a  comma-separated list of layer suffixes to determine the order in which
              layers are drawn on the plot. This can affect which symbol are plotted on  top  of,
              and so potentially obscure, which other ones.

              When  specifying  a  plot,  multiple  layers may be specified, each introduced by a
              parameter layer<N>, where <N> is  a  different  (arbitrary)  suffix  labelling  the
              layer, and is appended to all the parameters specific to defining that layer.

              By  default  the  layers  are  drawn  on  the plot in the order in which the layer*
              parameters appear on the command line. However if this parameter is specified, each
              comma-separated  element  is interpreted as a layer suffix, giving the ordered list
              of layers to plot. Every element of the list must be a suffix with a  corresponding
              layer parameter, but missing or repeated elements are allowed.

       legend=true|false
              Whether  to  draw  a  legend  or not. If no value is supplied, the decision is made
              automatically: a legend is drawn only if it would have more than one entry.

       legborder=true|false
              If true, a line border is drawn around the legend.

       legopaque=true|false
              If true, the background of the legend is opaque, and the legend obscures  any  plot
              components behind it. Otherwise, it's transparent.

       legseq=<suffix>[,...]
              Determines  which  layers  are  represented in the legend (if present) and in which
              order they appear. The legend has a line for each layer label (as determined by the
              leglabelN  parameter). If multiple layers have the same label, they will contribute
              to the same entry in the legend, with style icons  plotted  over  each  other.  The
              value  of  this  parameter  is  a comma-separated sequence of layer suffixes, which
              determines the order in which the  legend  entries  appear.  Layers  with  suffixes
              missing from this list do not show up in the legend at all.

              If  no  value  is  supplied  (the  default),  the sequence is the same as the layer
              plotting sequence (see seq).

       legpos=<xfrac,yfrac>
              Determines the internal position of the legend on the plot. The value is  a  comma-
              separated  pair  of  values  giving  the X and Y positions of the legend within the
              plotting bounds, so for instance "0.5,0.5" will put the legend right in the  middle
              of  the  plot.  If  no  value  is supplied, the legend will appear outside the plot
              boundary.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. legposZ affects only zone Z.

       title=<value>
              Text  of  a  title to be displayed at the top of the plot. If null, the default, no
              title is shown and there's more space for the graphics.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. titleZ affects only zone Z.

       auxmap=<map-name>|<color>-<color>[-<color>...]
              Color map used for Aux axis shading.

              A  mixed  bag  of  colour  ramps  are  available:  inferno, magma, plasma, viridis,
              cubehelix, sron, rainbow, rainbow2, rainbow3, pastel,  accent,  gnuplot,  gnuplot2,
              specxby,  set1,  paired,  hotcold,  rdbu,  piyg, brbg, cyan-magenta, red-blue, brg,
              heat, cold, light, greyscale, colour,  standard,  bugn,  bupu,  orrd,  pubu,  purd,
              huecl,  hue,  intensity,  rgb_red, rgb_green, rgb_blue, hsv_h, hsv_s, hsv_v, yuv_y,
              yuv_u,  yuv_v,  scale_hsv_s,  scale_hsv_v,  scale_yuv_y,  mask,  blacker,   whiter,
              transparency. Note: many of these, including rainbow-like ones, are frowned upon by
              the visualisation community.

              You can also construct your own custom colour map by giving a  sequence  of  colour
              names  separated  by minus sign ("-") characters. In this case the ramp is a linear
              interpolation between each pair of colours named, using the  same  syntax  as  when
              specifying  a  colour  value.  So for instance "yellow-hotpink-#0000ff" would shade
              from yellow via hot pink to blue.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxmapZ affects only zone Z.

       auxclip=<lo>,<hi>
              Defines  a  subrange  of  the  colour ramp to be used for Aux shading. The value is
              specified as a (low,high) comma-separated pair of two numbers between 0 and 1.

              If the full range 0,1 is used, the whole range of colours specified by the selected
              shader  will  be  used.  But  if for instance a value of 0,0.5 is given, only those
              colours at the left hand end of the ramp will be seen.

              If the null (default) value is chosen, a default clip will be used. This  generally
              covers  most  or  all  of  the range 0-1 but for colour maps which fade to white, a
              small proportion of the lower end may be excluded, to ensure that all  the  colours
              are  visually  distinguishable  from  a white background. This default is usually a
              good idea if the colour map is being used with something like a scatter plot, where
              markers  are  plotted  against  a  white  background. However, for something like a
              density map when the whole plotting area is tiled with colours from the map, it may
              be better to supply the whole range 0,1 explicitly.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. auxclipZ affects only zone Z.

       auxflip=true|false
              If true, the colour map on the Aux axis will be reversed.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxflipZ affects only zone Z.

       auxquant=<number>
              Allows  the colour map used for the Aux axis to be quantised. If an integer value N
              is chosen then the colour map will be viewed as N discrete evenly-spaced levels, so
              that only N different colours will appear in the plot. This can be used to generate
              a contour-like effect, and may make it easier to trace the boundaries of regions of
              interest by eye.

              If left blank, the colour map is nominally continuous (though in practice it may be
              quantised to a medium-sized number like 256).

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxquantZ affects only zone Z.

       auxfunc=log|linear|sqrt|square
              Defines  the  way  that  values  in the Aux range are mapped to the selected colour
              ramp.

              The available options are:

                * log: Logarithmic scaling

                * linear: Linear scaling

                * sqrt: Square root scaling

                * square: Square scaling

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxfuncZ affects only zone Z.

       auxmin=<number>
              Minimum  value  of  the data coordinate on the Aux axis. This sets the value before
              any subranging is applied. If not  supplied,  the  value  is  determined  from  the
              plotted data.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. auxminZ affects only zone Z.

       auxmax=<number>
              Maximum value of the data coordinate on the Aux axis. This sets  the  value  before
              any  subranging  is  applied.  If  not  supplied,  the value is determined from the
              plotted data.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxmaxZ affects only zone Z.

       auxlabel=<text>
              Sets the label used to annotate the aux axis, if it is visible.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. auxlabelZ affects only zone Z.

       auxcrowd=<factor>
              Determines how closely the tick marks are spaced on the Aux axis, if  visible.  The
              default  value  is  1, meaning normal crowding. Larger values result in more ticks,
              and smaller values fewer ticks. Tick marks will not however be  spaced  so  closely
              that  the  labels  overlap  each other, so to get very closely spaced marks you may
              need to reduce the font size as well.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. auxcrowdZ affects only zone Z.

       auxwidth=<pixels>
              Determines the lateral size of the aux colour ramp, if visible, in pixels.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. auxwidthZ affects only zone Z.

       auxvisible=true|false
              Determines whether the aux axis colour ramp is displayed alongside the plot.

              If not supplied (the default), the aux axis will be visible  when  aux  shading  is
              used in any of the plotted layers.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. auxvisibleZ affects only zone Z.

       forcebitmap=true|false
              Affects whether rendering of the data contents of a plot (though  not  axis  labels
              etc)  is  always  done to an intermediate bitmap rather than, where possible, being
              painted using graphics primitives.  This  is  a  rather  arcane  setting  that  may
              nevertheless  have  noticeable  effects  on  the  appearance  and size of an output
              graphics file, as well as plotting time. For some types of plot (e.g. shadingN=auto
              or  shadingN=density)  it will have no effect, since this kind of rendering happens
              in any case.

              When writing to vector graphics formats (PDF and PostScript), setting it true  will
              force  the  data  contents to be bitmapped. This may make the output less beautiful
              (round markers will no longer be perfectly round), but it  may  result  in  a  much
              smaller file if there are very many data points.

              When  writing to bitmapped output formats (PNG, GIF, JPEG, ...), it fixes shapes to
              be the same as seen on the screen rather than be  rendered  at  the  mercy  of  the
              graphics system, which sometimes introduces small distortions.

       compositor=0..1
              Defines  how multiple overplotted partially transparent pixels are combined to form
              a resulting colour. The way this is used depends on the details  of  the  specified
              plot.

              Currently,  this parameter takes a "boost" value in the range 0..1. If the value is
              zero, saturation semantics are used: RGB colours are added in proporition to  their
              associated  alpha value until the total alpha is saturated (reaches 1), after which
              additional pixels have no further effect. For larger boost values,  the  effect  is
              similar,  but  any  non-zero  alpha  in  the output is boosted to the given minimum
              value. The effect of this is that  even  very  slightly  populated  pixels  can  be
              visually  distinguished  from  unpopulated  ones  which  may  not  be  the case for
              saturation composition.

       animate=<table>
              If not null, this parameter causes the  command  to  create  a  sequence  of  plots
              instead  of just one. The parameter value is a table with one row for each frame to
              be produced. Columns in the table are interpreted  as  parameters  which  may  take
              different  values  for  each  frame; the column name is the parameter name, and the
              value for a given frame is  its  value  from  that  row.  Animating  like  this  is
              considerably more efficient than invoking the STILTS command in a loop.

              The  location  of  the  animation control table. This may take one of the following
              forms:

                * A filename.

                * A URL.

                * The special value "-", meaning standard input. In this case  the  input  format
                  must  be  given  explicitly using the afmt parameter. Note that not all formats
                  can be streamed in this way.

                * A system command line with either a "<"  character  at  the  start,  or  a  "|"
                  character at the end ("<syscmd" or "syscmd|"). This executes the given pipeline
                  and reads from its standard output. This will probably only work  on  unix-like
                  systems.
               In  any  case,  compressed data in one of the supported compression formats (gzip,
              Unix compress or bzip2) will be decompressed transparently.

       afmt=<in-format>
              Specifies the format of the animation  control  table  as  specified  by  parameter
              animate. The known formats are listed in SUN/256. This flag can be used if you know
              what format your table is in. If it has the special  value  (auto)  (the  default),
              then  an attempt will be made to detect the format of the table automatically. This
              cannot always be done correctly however, in which case the program will  exit  with
              an error explaining which formats were attempted.

       astream=true|false
              If set true, the animation control table specified by the animate parameter will be
              read as a stream. It is  necessary  to  give  the  afmt  parameter  in  this  case.
              Depending  on  the required operations and processing mode, this may cause the read
              to fail (sometimes it is necessary to read the table more than  once).  It  is  not
              normally  necessary  to  set  this  flag;  in  most cases the data will be streamed
              automatically if that is the best thing to do. However it can sometimes  result  in
              less  resource  usage  when  processing  large  files  in  certain formats (such as
              VOTable).

       acmd=<cmds>
              Specifies processing to be performed on the animation control table as specified by
              parameter  animate,  before any other processing has taken place. The value of this
              parameter is one or more of the filter commands described in SUN/256. If more  than
              one  is given, they must be separated by semicolon characters (";"). This parameter
              can be repeated multiple times on the same command line  to  build  up  a  list  of
              processing steps. The sequence of commands given in this way defines the processing
              pipeline which is performed on the table.

              Commands may alteratively be supplied in an external file, by using the indirection
              character  '@'. Thus a value of "@filename" causes the file filename to be read for
              a list of filter commands to execute. The commands in the file may be separated  by
              newline characters and/or semicolons, and lines which are blank or which start with
              a '#' character are ignored.

       parallel=<int-value>
              Determines how many threads will run in  parallel  if  animation  output  is  being
              produced.  Only used if the animate parameter is supplied. The default value is the
              number of processors apparently available to the JVM.

       ylog=true|false
              If false (the default), the  scale  on  the  Y  axis  is  linear,  if  true  it  is
              logarithmic.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. ylogZ affects only zone Z.

       yflip=true|false
              If true, the scale on the Y axis will increase in the  opposite  sense  from  usual
              (e.g. right to left rather than left to right).

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. yflipZ affects only zone Z.

       tlabel=<text>
              Gives a label to be used for annotating the Time axis. If  not  supplied  no  label
              will be drawn.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. tlabelZ affects only zone Z.

       ylabel=<text>
              Gives a label to be used for annotating axis Y A default value based on the plotted
              data will be used if no value is supplied.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. ylabelZ affects only zone Z.

       grid=true|false
              If true, grid lines are drawn on the plot at positions determined by the major tick
              marks. If false, they are absent.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. gridZ affects only zone Z.

       tcrowd=<number>
              Determines how closely the tick marks are spaced on  the  Time  axis.  The  default
              value  is  1,  meaning  normal  crowding.  Larger  values result in more ticks, and
              smaller values fewer ticks. Tick marks will not however be spaced so  closely  that
              the  labels overlap each other, so to get very closely spaced marks you may need to
              reduce the font size as well.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. tcrowdZ affects only zone Z.

       ycrowd=<number>
              Determines  how  closely the tick marks are spaced on the Y axis. The default value
              is 1, meaning normal crowding. Larger values result  in  more  ticks,  and  smaller
              values  fewer  ticks.  Tick  marks  will  not however be spaced so closely that the
              labels overlap each other, so to get very closely spaced  marks  you  may  need  to
              reduce the font size as well.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. ycrowdZ affects only zone Z.

       tformat=iso-8601|year|mjd|unix
              Selects the way in which time values are represented when using them to  label  the
              time axis.

              The available options are:

                * iso-8601:   ISO   8601   date,   of   the   form   yyyy-mm-ddThh:mm:ss.s  (e.g.
                  "2012-03-13T04")

                * year: Decimal year (e.g. "2012.197")

                * mjd: Modified Julian Date (e.g. "55999.2")

                * unix: Seconds since midnight of 1 Jan 1970 (e.g. "1331613420")

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. tformatZ affects only zone Z.

       minor=true|false
              If  true,  minor  tick  marks  are painted along the axes as well as the major tick
              marks. Minor tick marks do not have associated grid lines.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. minorZ affects only zone Z.

       texttype=plain|antialias|latex
              Determines  how to turn label text into characters on the plot. Plain and Antialias
              both take the text at face value,  but  Antialias  smooths  the  characters.  LaTeX
              interprets the text as LaTeX source code and typesets it accordingly.

              When  not using LaTeX, antialiased text usually looks nicer, but can be perceptibly
              slower to plot. At time of writing, on MacOS antialiased text seems to be  required
              to  stop  the  writing  coming  out upside-down for non-horizontal text (MacOS java
              bug).

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. texttypeZ affects only zone Z.

       fontsize=<int-value>
              Size of the text font in points.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. fontsizeZ affects only zone Z.

       fontstyle=standard|serif|mono
              Font style for text.

              The available options are:

                * standard

                * serif

                * mono

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. fontstyleZ affects only zone Z.

       fontweight=plain|bold|italic|bold_italic
              Font weight for text.

              The available options are:

                * plain

                * bold

                * italic

                * bold_italic

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. fontweightZ affects only zone Z.

       tmin=<year-or-iso8601>
              Minimum value of the time coordinate  plotted.  This  sets  the  value  before  any
              subranging  is  applied.  If not supplied, the value is determined from the plotted
              data.

              The value may be set with a string that can be interpreted as a decimal year  (e.g.
              "2007.521")  or  an ISO-8601 string (e.g. "2007-07-10T03:57:36", "2007-07-10T03" or
              "2007-07-10"). Note however that the numeric value of this  configuration  item  if
              accessed programmatically is seconds since 1 Jan 1970.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. tminZ affects only zone Z.

       tmax=<year-or-iso8601>
              Maximum value of the time coordinate  plotted.  This  sets  the  value  before  any
              subranging  is  applied.  If not supplied, the value is determined from the plotted
              data.

              The value may be set with a string that can be interpreted as a decimal year  (e.g.
              "2007.521")  or  an ISO-8601 string (e.g. "2007-07-10T03:57:36", "2007-07-10T03" or
              "2007-07-10"). Note however that the numeric value of this  configuration  item  if
              accessed programmatically is seconds since 1 Jan 1970.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. tmaxZ affects only zone Z.

       tsub=<lo>,<hi>
              Defines a normalised adjustment to the data range of the Time axis. The  value  may
              be  specified  as a comma-separated pair of two numbers, giving the lower and upper
              bounds of the range of of interest respectively. This sub-range is applied  to  the
              data  range  that  would  otherwise  be  used,  either  automatically calculated or
              explicitly supplied; zero corresponds to the lower bound and one to the upper.

              The default value "0,1" therefore has no effect. The range could be  restricted  to
              its lower half with the value 0,0.5.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. tsubZ affects only zone Z.

       ymin=<number>
              Minimum value of the data coordinate on the Y axis. This sets the value before  any
              subranging  is  applied.  If not supplied, the value is determined from the plotted
              data.

              If a zone suffix is appended to the parameter name, only  that  zone  is  affected,
              e.g. yminZ affects only zone Z.

       ymax=<number>
              Maximum  value of the data coordinate on the Y axis. This sets the value before any
              subranging is applied. If not supplied, the value is determined  from  the  plotted
              data.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. ymaxZ affects only zone Z.

       ysub=<lo>,<hi>
              Defines a normalised adjustment to the data range of the Y axis. The value  may  be
              specified  as  a  comma-separated  pair  of two numbers, giving the lower and upper
              bounds of the range of of interest respectively. This sub-range is applied  to  the
              data  range  that  would  otherwise  be  used,  either  automatically calculated or
              explicitly supplied; zero corresponds to the lower bound and one to the upper.

              The default value "0,1" therefore has no effect. The range could be  restricted  to
              its lower half with the value 0,0.5.

              If  a  zone  suffix  is appended to the parameter name, only that zone is affected,
              e.g. ysubZ affects only zone Z.

       navaxes=t|y|ty
              Determines the axes which are affected by the interactive navigation  actions  (pan
              and  zoom).  The  default  is  t  which  means that the various mouse gestures will
              provide panning and zooming in the Time direction only. However, if it is set to ty
              mouse actions will affect both the horizontal and vertical axes.

       zoomfactor=<number>
              Sets the amount by which the plot view zooms in or out for each unit of mouse wheel
              movement. A value of 1 means that mouse wheel zooming has no effect. A higher value
              means that the mouse wheel zooms faster and a value nearer 1 means it zooms slower.
              Values below 1 are not permitted.

       leglabelN=<text>
              Sets the presentation label for the layer with a given suffix.  This  is  the  text
              which  is  displayed  in  the  legend, if present. Multiple layers may use the same
              label, in which case they will be combined to form a single legend entry.

              If no value is supplied (the default), the suffix itself is used as the label.

       layerN=<layer-type> <layerN-specific-params>
              Selects one of the available plot types for layerN. A plot consists of  a  plotting
              surface,  set  up  using the various unsuffixed parameters of the plotting command,
              and zero or more plot layers. Each layer is introduced by a parameter with the name
              layer<N> where the suffix "<N>" is a label identifying the layer and is appended to
              all the parameter names which configure that layer. Suffixes  may  be  any  string,
              including the empty string.

              This  parameter  may  take one of the following values, described in more detail in
              SUN/256:

                * mark

                * line

                * linearfit

                * fill

                * quantile

                * grid

                * histogram

                * kde

                * knn

                * densogram

                * gaussian

                * yerror

                * spectrogram

                * label

                * function

              Each of these layer types comes with a list of type-specific parameters  to  define
              the details of that layer, including some or all of the following groups:

                * input table parameters (e.g. inN, icmdN)

                * coordinate params referring to input table columns (e.g. xN, yN)

                * layer style parameters (e.g. shadingN, colorN)

              Every parameter notionally carries the same suffix N. However, if the suffix is not
              present, the application will try looking for a parameter with the same  name  with
              no  suffix  instead. In this way, if several layers have the same value for a given
              parameter (for instance input table),  you  can  supply  it  using  one  unsuffixed
              parameter  to  save  having  to  supply  several parameters with the same value but
              different suffixes.

       zoneN=<text>
              Defines which plot zone the layer with suffix N will appear  in.  This  only  makes
              sense  for  multi-zone plots. The actual value of the parameter is not significant,
              it just serves as a label, but different layers will end up in the same  plot  zone
              if they give the same values for this parameter.

SEE ALSO

       stilts(1)

       If  the  package  stilts-doc  is installed, the full documentation SUN/256 is available in
       HTML format:
       file:///usr/share/doc/stilts-doc/sun256/index.html

VERSION

       STILTS version 3.1-5-debian

       This is the Debian version of Stilts, which lack the support  of  some  file  formats  and
       network protocols. For differences see
       file:///usr/share/doc/stilts/README.Debian

AUTHOR

       Mark Taylor (Bristol University)

                                             Mar 2017                         STILTS-PLOT2TIME(1)