Provided by: grass-doc_7.6.1-3build1_all bug

NAME

       t.rast.series   -  Performs  different  aggregation  algorithms  from r.series on all or a
       subset of raster maps in a space time raster dataset.

KEYWORDS

       temporal, aggregation, series, raster, time

SYNOPSIS

       t.rast.series
       t.rast.series --help
       t.rast.series        [-tn]        input=name        method=string         [quantile=float]
       [order=string[,string,...]]     [where=sql_query]   output=name   [--overwrite]   [--help]
       [--verbose]  [--quiet]  [--ui]

   Flags:
       -t
           Do not assign the space time raster dataset start and end time to the output map

       -n
           Propagate NULLs

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       method=string [required]
           Aggregate operation to be performed on the raster maps
           Options: average, count,  median,  mode,  minimum,  min_raster,  maximum,  max_raster,
           stddev,  range,  sum,  variance,  diversity,  slope, offset, detcoeff, quart1, quart3,
           perc90, quantile, skewness, kurtosis
           Default: average

       quantile=float
           Quantile to calculate for method=quantile
           Options: 0.0-1.0

       order=string[,string,...]
           Sort the maps by category
           Options:   id,    name,    creator,    mapset,    creation_time,    modification_time,
           start_time,  end_time,  north,  south,  west,  east,  min,  max
           Default: start_time

       where=sql_query
           WHERE  conditions  of  SQL  statement without ’where’ keyword used in the temporal GIS
           framework
           Example: start_time > ’2001-01-01 12:30:00’

       output=name [required]
           Name for output raster map

DESCRIPTION

       t.rast.series is a simple wrapper for the raster module r.series. It supports a subset  of
       the aggregation methods of r.series.

       The  input  of  this  module is a single space time raster dataset, the output is a single
       raster map layer. A subset of the input space time raster dataset can  be  selected  using
       the  where  option. The sorting of the raster map layer can be set using the order option.
       Be aware that the order of  the  maps  can  significantly  influence  the  result  of  the
       aggregation (e.g.: slope). By default the maps are ordered by start_time.

EXAMPLE

       Estimate average temperature for the whole time series
       t.rast.series input=tempmean_monthly output=tempmean_general method=average
       Estimate  average  temperature  for  all  January  maps  in the time series, the so-called
       climatology
       t.rast.series input=tempmean_monthly \
           method=average output=tempmean_january \
           where="strftime(’%m’, start_time)=’01’"
       # equivalently, we can use
       t.rast.series input=tempmean_monthly \
           output=tempmean_january method=average \
           where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
       # if we want also February and March averages
       t.rast.series input=tempmean_monthly \
           output=tempmean_february method=average \
           where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
       t.rast.series input=tempmean_monthly \
           output=tempmean_march method=average \
           where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
       Generalizing a bit, we can estimate monthly climatologies  for  all  months  by  means  of
       different methods
       for i in `seq -w 1 12` ; do
         for m in average stddev minimum maximum ; do
           t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
           where="strftime(’%m’, start_time)=’${i}’"
         done
       done

SEE ALSO

        r.series, t.create, t.info

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

       Last changed: $Date: 2016-01-13 00:28:48 +0100 (Wed, 13 Jan 2016) $

SOURCE CODE

       Available at: t.rast.series source code (history)

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2019 GRASS Development Team, GRASS GIS 7.6.1 Reference Manual