Provided by: openssl_1.1.1c-1ubuntu4_amd64 bug


       passphrase-encoding - How diverse parts of OpenSSL treat pass phrases character encoding


       In a modern world with all sorts of character encodings, the treatment of pass phrases has
       become increasingly complex.  This manual page attempts to give an overview over how this
       problem is currently addressed in different parts of the OpenSSL library.

   The general case
       The OpenSSL library doesn't treat pass phrases in any special way as a general rule, and
       trusts the application or user to choose a suitable character set and stick to that
       throughout the lifetime of affected objects.  This means that for an object that was
       encrypted using a pass phrase encoded in ISO-8859-1, that object needs to be decrypted
       using a pass phrase encoded in ISO-8859-1.  Using the wrong encoding is expected to cause
       a decryption failure.

       PKCS#12 is a bit different regarding pass phrase encoding.  The standard stipulates that
       the pass phrase shall be encoded as an ASN.1 BMPString, which consists of the code points
       of the basic multilingual plane, encoded in big endian (UCS-2 BE).

       OpenSSL tries to adapt to this requirements in one of the following manners:

       1.  Treats the received pass phrase as UTF-8 encoded and tries to re-encode it to UTF-16
           (which is the same as UCS-2 for characters U+0000 to U+D7FF and U+E000 to U+FFFF, but
           becomes an expansion for any other character), or failing that, proceeds with step 2.

       2.  Assumes that the pass phrase is encoded in ASCII or ISO-8859-1 and opportunistically
           prepends each byte with a zero byte to obtain the UCS-2 encoding of the characters,
           which it stores as a BMPString.

           Note that since there is no check of your locale, this may produce UCS-2 / UTF-16
           characters that do not correspond to the original pass phrase characters for other
           character sets, such as any ISO-8859-X encoding other than ISO-8859-1 (or for Windows,
           CP 1252 with exception for the extra "graphical" characters in the 0x80-0x9F range).

       OpenSSL versions older than 1.1.0 do variant 2 only, and that is the reason why OpenSSL
       still does this, to be able to read files produced with older versions.

       It should be noted that this approach isn't entirely fault free.

       A pass phrase encoded in ISO-8859-2 could very well have a sequence such as 0xC3 0xAF
       (which is the two characters "LATIN CAPITAL LETTER A WITH BREVE" and "LATIN CAPITAL LETTER
       Z WITH DOT ABOVE" in ISO-8859-2 encoding), but would be misinterpreted as the perfectly
       valid UTF-8 encoded code point U+00EF (LATIN SMALL LETTER I WITH DIARESIS) if the pass
       phrase doesn't contain anything that would be invalid UTF-8.  A pass phrase that contains
       this kind of byte sequence will give a different outcome in OpenSSL 1.1.0 and newer than
       in OpenSSL older than 1.1.0.

        0x00 0xC3 0x00 0xAF                    # OpenSSL older than 1.1.0
        0x00 0xEF                              # OpenSSL 1.1.0 and newer

       On the same accord, anything encoded in UTF-8 that was given to OpenSSL older than 1.1.0
       was misinterpreted as ISO-8859-1 sequences.

       ossl_store(7) acts as a general interface to access all kinds of objects, potentially
       protected with a pass phrase, a PIN or something else.  This API stipulates that pass
       phrases should be UTF-8 encoded, and that any other pass phrase encoding may give
       undefined results.  This API relies on the application to ensure UTF-8 encoding, and
       doesn't check that this is the case, so what it gets, it will also pass to the underlying


       This section assumes that you know what pass phrase was used for encryption, but that it
       may have been encoded in a different character encoding than the one used by your current
       input method.  For example, the pass phrase may have been used at a time when your default
       encoding was ISO-8859-1 (i.e. "naieve" resulting in the byte sequence 0x6E 0x61 0xEF 0x76
       0x65), and you're now in an environment where your default encoding is UTF-8 (i.e.
       "naieve" resulting in the byte sequence 0x6E 0x61 0xC3 0xAF 0x76 0x65).  Whenever it's
       mentioned that you should use a certain character encoding, it should be understood that
       you either change the input method to use the mentioned encoding when you type in your
       pass phrase, or use some suitable tool to convert your pass phrase from your default
       encoding to the target encoding.

       Also note that the sub-sections below discuss human readable pass phrases.  This is
       particularly relevant for PKCS#12 objects, where human readable pass phrases are assumed.
       For other objects, it's as legitimate to use any byte sequence (such as a sequence of
       bytes from `/dev/urandom` that's been saved away), which makes any character encoding
       discussion irrelevant; in such cases, simply use the same byte sequence as it is.

   Creating new objects
       For creating new pass phrase protected objects, make sure the pass phrase is encoded using
       UTF-8.  This is default on most modern Unixes, but may involve an effort on other
       platforms.  Specifically for Windows, setting the environment variable
       "OPENSSL_WIN32_UTF8" will have anything entered on [Windows] console prompt converted to
       UTF-8 (command line and separately prompted pass phrases alike).

   Opening existing objects
       For opening pass phrase protected objects where you know what character encoding was used
       for the encryption pass phrase, make sure to use the same encoding again.

       For opening pass phrase protected objects where the character encoding that was used is
       unknown, or where the producing application is unknown, try one of the following:

       1.  Try the pass phrase that you have as it is in the character encoding of your
           environment.  It's possible that its byte sequence is exactly right.

       2.  Convert the pass phrase to UTF-8 and try with the result.  Specifically with PKCS#12,
           this should open up any object that was created according to the specification.

       3.  Do a naieve (i.e. purely mathematical) ISO-8859-1 to UTF-8 conversion and try with the
           result.  This differs from the previous attempt because ISO-8859-1 maps directly to
           U+0000 to U+00FF, which other non-UTF-8 character sets do not.

           This also takes care of the case when a UTF-8 encoded string was used with OpenSSL
           older than 1.1.0.  (for example, "ie", which is 0xC3 0xAF when encoded in UTF-8, would
           become 0xC3 0x83 0xC2 0xAF when re-encoded in the naieve manner.  The conversion to
           BMPString would then yield 0x00 0xC3 0x00 0xA4 0x00 0x00, the erroneous/non-compliant
           encoding used by OpenSSL older than 1.1.0)


       evp(7), ossl_store(7), EVP_BytesToKey(3), EVP_DecryptInit(3), PEM_do_header(3),
       PKCS12_parse(3), PKCS12_newpass(3), d2i_PKCS8PrivateKey_bio(3)


       Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.

       Licensed under the OpenSSL license (the "License").  You may not use this file except in
       compliance with the License.  You can obtain a copy in the file LICENSE in the source
       distribution or at <>.