Provided by: llvm-9_9-2_amd64 bug

NAME

       llvm-exegesis - LLVM Machine Instruction Benchmark

SYNOPSIS

       llvm-exegesis [options]

DESCRIPTION

       llvm-exegesis  is  a  benchmarking tool that uses information available in LLVM to measure
       host machine instruction characteristics like latency, throughput, or port decomposition.

       Given an LLVM opcode name and a benchmarking mode, llvm-exegesis generates a code  snippet
       that  makes execution as serial (resp. as parallel) as possible so that we can measure the
       latency (resp. inverse throughput/uop decomposition) of the instruction.  The code snippet
       is  jitted  and  executed  on the host subtarget. The time taken (resp. resource usage) is
       measured using hardware performance counters. The result is printed out  as  YAML  to  the
       standard output.

       The main goal of this tool is to automatically (in)validate the LLVM’s TableDef scheduling
       models. To that end, we also provide analysis of the results.

       llvm-exegesis can also benchmark arbitrary user-provided code snippets.

EXAMPLE 1: BENCHMARKING INSTRUCTIONS

       Assume you have an X86-64 machine. To measure the latency of a single instruction, run:

          $ llvm-exegesis -mode=latency -opcode-name=ADD64rr

       Measuring the uop decomposition or inverse throughput of an instruction works similarly:

          $ llvm-exegesis -mode=uops -opcode-name=ADD64rr
          $ llvm-exegesis -mode=inverse_throughput -opcode-name=ADD64rr

       The output is a YAML document (the default is to write to stdout, but you can redirect the
       output to a file using -benchmarks-file):

          ---
          key:
            opcode_name:     ADD64rr
            mode:            latency
            config:          ''
          cpu_name:        haswell
          llvm_triple:     x86_64-unknown-linux-gnu
          num_repetitions: 10000
          measurements:
            - { key: latency, value: 1.0058, debug_string: '' }
          error:           ''
          info:            'explicit self cycles, selecting one aliasing configuration.
          Snippet:
          ADD64rr R8, R8, R10
          '
          ...

       To measure the latency of all instructions for the host architecture, run:

          #!/bin/bash
          readonly INSTRUCTIONS=$(($(grep INSTRUCTION_LIST_END build/lib/Target/X86/X86GenInstrInfo.inc | cut -f2 -d=) - 1))
          for INSTRUCTION in $(seq 1 ${INSTRUCTIONS});
          do
            ./build/bin/llvm-exegesis -mode=latency -opcode-index=${INSTRUCTION} | sed -n '/---/,$p'
          done

       FIXME: Provide an llvm-exegesis option to test all instructions.

EXAMPLE 2: BENCHMARKING A CUSTOM CODE SNIPPET

       To  measure  the latency/uops of a custom piece of code, you can specify the snippets-file
       option (- reads from standard input).

          $ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-

       Real-life code snippets typically depend on registers or memory.  llvm-exegesis checks the
       liveliness of registers (i.e. any register use has a corresponding def or is a “live in”).
       If your code depends on the value of some registers, you have two options:

       · Mark the register as requiring a definition. llvm-exegesis will automatically  assign  a
         value  to  the  register. This can be done using the directive LLVM-EXEGESIS-DEFREG <reg
         name> <hex_value>, where <hex_value> is a  bit  pattern  used  to  fill  <reg_name>.  If
         <hex_value> is smaller than the register width, it will be sign-extended.

       · Mark  the register as a “live in”. llvm-exegesis will benchmark using whatever value was
         in this registers on entry. This can be done using  the  directive  LLVM-EXEGESIS-LIVEIN
         <reg name>.

       For  example,  the following code snippet depends on the values of XMM1 (which will be set
       by the tool) and the memory buffer passed in RDI (live in).

          # LLVM-EXEGESIS-LIVEIN RDI
          # LLVM-EXEGESIS-DEFREG XMM1 42
          vmulps        (%rdi), %xmm1, %xmm2
          vhaddps       %xmm2, %xmm2, %xmm3
          addq $0x10, %rdi

EXAMPLE 3: ANALYSIS

       Assuming you have a set of benchmarked instructions (either latency or uops)  as  YAML  in
       file /tmp/benchmarks.yaml, you can analyze the results using the following command:

            $ llvm-exegesis -mode=analysis \
          -benchmarks-file=/tmp/benchmarks.yaml \
          -analysis-clusters-output-file=/tmp/clusters.csv \
          -analysis-inconsistencies-output-file=/tmp/inconsistencies.html

       This  will group the instructions into clusters with the same performance characteristics.
       The clusters will be written out to /tmp/clusters.csv in the following format:

          cluster_id,opcode_name,config,sched_class
          ...
          2,ADD32ri8_DB,,WriteALU,1.00
          2,ADD32ri_DB,,WriteALU,1.01
          2,ADD32rr,,WriteALU,1.01
          2,ADD32rr_DB,,WriteALU,1.00
          2,ADD32rr_REV,,WriteALU,1.00
          2,ADD64i32,,WriteALU,1.01
          2,ADD64ri32,,WriteALU,1.01
          2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00
          2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02
          2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01
          2,ADD64ri8,,WriteALU,1.00
          2,SETBr,,WriteSETCC,1.01
          ...

       llvm-exegesis will  also  analyze  the  clusters  to  point  out  inconsistencies  in  the
       scheduling information. The output is an html file. For example, /tmp/inconsistencies.html
       will contain messages like the following : [image]

       Note that the scheduling class names will be resolved only when llvm-exegesis is  compiled
       in  debug  mode, else only the class id will be shown. This does not invalidate any of the
       analysis results though.

OPTIONS

       -help  Print a summary of command line options.

       -opcode-index=<LLVM opcode index>
              Specify the opcode to measure,  by  index.  See  example  1  for  details.   Either
              opcode-index, opcode-name or snippets-file must be set.

       -opcode-name=<opcode name 1>,<opcode name 2>,...
              Specify  the  opcode  to  measure,  by  name. Several opcodes can be specified as a
              comma-separated list. See example 1 for details.  Either opcode-index,  opcode-name
              or snippets-file must be set.

              -snippets-file=<filename>
                     Specify  the  custom  code  snippet  to  measure. See example 2 for details.
                     Either opcode-index, opcode-name or snippets-file must be set.

       -mode=[latency|uops|inverse_throughput|analysis]
              Specify the run mode. Note that if you pick analysis mode, you also need to specify
              at      least      one      of      the     -analysis-clusters-output-file=     and
              -analysis-inconsistencies-output-file=.

       -num-repetitions=<Number of repetition>
              Specify the number of repetitions of the asm snippet.  Higher values lead  to  more
              accurate measurements but lengthen the benchmark.

       -benchmarks-file=</path/to/file>
              File  to  read  (analysis  mode)  or  write (latency/uops/inverse_throughput modes)
              benchmark results. “-” uses stdin/stdout.

       -analysis-clusters-output-file=</path/to/file>
              If provided, write the analysis clusters as CSV to this file. “-” prints to stdout.
              By default, this analysis is not run.

       -analysis-inconsistencies-output-file=</path/to/file>
              If non-empty, write inconsistencies found during analysis to this file. - prints to
              stdout. By default, this analysis is not run.

       -analysis-clustering=[dbscan,naive]
              Specify the clustering algorithm to use. By default DBSCAN  will  be  used.   Naive
              clustering    algorithm    is    better    for    doing   further   work   on   the
              -analysis-inconsistencies-output-file= output,  it  will  create  one  cluster  per
              opcode, and check that the cluster is stable (all points are neighbours).

       -analysis-numpoints=<dbscan numPoints parameter>
              Specify  the  numPoints parameters to be used for DBSCAN clustering (analysis mode,
              DBSCAN only).

       -analysis-clustering-epsilon=<dbscan epsilon parameter>
              Specify the epsilon parameter used for clustering  of  benchmark  points  (analysis
              mode).

       -analysis-inconsistency-epsilon=<epsilon>
              Specify  the  epsilon parameter used for detection of when the cluster is different
              from the LLVM schedule profile values (analysis mode).

       -analysis-display-unstable-clusters
              If there is more than one benchmark for an opcode, said benchmarks may end  up  not
              being  clustered  into the same cluster if the measured performance characteristics
              are different. by default all such  opcodes  are  filtered  out.   This  flag  will
              instead show only such unstable opcodes.

       -ignore-invalid-sched-class=false
              If set, ignore instructions that do not have a sched class (class idx = 0).

       -mcpu=<cpu name>
              If  set,  measure  the cpu characteristics using the counters for this CPU. This is
              useful when creating new sched models (the host CPU is unknown to LLVM).

       --dump-object-to-disk=true
              By default, llvm-exegesis will dump the generated  code  to  a  temporary  file  to
              enable  code inspection. You may disable it to speed up the execution and save disk
              space.

EXIT STATUS

       llvm-exegesis returns 0 on success. Otherwise, an error message  is  printed  to  standard
       error, and the tool returns a non 0 value.

AUTHOR

       Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT

       2003-2019, LLVM Project