Provided by: ocaml-man_4.08.1-8_all bug

NAME

       Stdlib.Bigarray - no description

Module

       Module   Stdlib.Bigarray

Documentation

       Module Bigarray
        : (module Stdlib__bigarray)

   Element kinds
       Bigarrays can contain elements of the following kinds:

       -IEEE single precision (32 bits) floating-point numbers ( Bigarray.float32_elt ),

       -IEEE double precision (64 bits) floating-point numbers ( Bigarray.float64_elt ),

       -IEEE    single   precision   (2   *   32   bits)   floating-point   complex   numbers   (
       Bigarray.complex32_elt ),

       -IEEE   double   precision   (2   *   64   bits)   floating-point   complex   numbers    (
       Bigarray.complex64_elt ),

       -8-bit     integers     (signed     or    unsigned)    (    Bigarray.int8_signed_elt    or
       Bigarray.int8_unsigned_elt ),

       -16-bit    integers    (signed    or    unsigned)    (    Bigarray.int16_signed_elt     or
       Bigarray.int16_unsigned_elt ),

       -OCaml integers (signed, 31 bits on 32-bit architectures, 63 bits on 64-bit architectures)
       ( Bigarray.int_elt ),

       -32-bit signed integers ( Bigarray.int32_elt ),

       -64-bit signed integers ( Bigarray.int64_elt ),

       -platform-native signed integers (32 bits on  32-bit  architectures,  64  bits  on  64-bit
       architectures) ( Bigarray.nativeint_elt ).

       Each element kind is represented at the type level by one of the *_elt types defined below
       (defined with a single constructor instead of abstract  types  for  technical  injectivity
       reasons).

       type float32_elt =
        | Float32_elt

       type float64_elt =
        | Float64_elt

       type int8_signed_elt =
        | Int8_signed_elt

       type int8_unsigned_elt =
        | Int8_unsigned_elt

       type int16_signed_elt =
        | Int16_signed_elt

       type int16_unsigned_elt =
        | Int16_unsigned_elt

       type int32_elt =
        | Int32_elt

       type int64_elt =
        | Int64_elt

       type int_elt =
        | Int_elt

       type nativeint_elt =
        | Nativeint_elt

       type complex32_elt =
        | Complex32_elt

       type complex64_elt =
        | Complex64_elt

       type ('a, 'b) kind =
        | Float32 : (float, float32_elt) kind
        | Float64 : (float, float64_elt) kind
        | Int8_signed : (int, int8_signed_elt) kind
        | Int8_unsigned : (int, int8_unsigned_elt) kind
        | Int16_signed : (int, int16_signed_elt) kind
        | Int16_unsigned : (int, int16_unsigned_elt) kind
        | Int32 : (int32, int32_elt) kind
        | Int64 : (int64, int64_elt) kind
        | Int : (int, int_elt) kind
        | Nativeint : (nativeint, nativeint_elt) kind
        | Complex32 : (Complex.t, complex32_elt) kind
        | Complex64 : (Complex.t, complex64_elt) kind
        | Char : (char, int8_unsigned_elt) kind

       To  each  element kind is associated an OCaml type, which is the type of OCaml values that
       can be stored in the Bigarray or read back from it.  This type is not necessarily the same
       as  the  type of the array elements proper: for instance, a Bigarray whose elements are of
       kind float32_elt contains 32-bit single precision floats, but reading or  writing  one  of
       its  elements  from  OCaml  uses  the  OCaml type float , which is 64-bit double precision
       floats.

       The GADT type ('a, 'b) kind captures this association of an OCaml type 'a for values  read
       or written in the Bigarray, and of an element kind 'b which represents the actual contents
       of the Bigarray. Its constructors list all  possible  associations  of  OCaml  types  with
       element kinds, and are re-exported below for backward-compatibility reasons.

       Using  a  generalized algebraic datatype (GADT) here allows writing well-typed polymorphic
       functions whose return type depend on the argument type, such as:

       let zero : type a b. (a, b) kind ->  a  =  function  |  Float32  ->  0.0  |  Complex32  ->
       Complex.zero  |  Float64  ->  0.0  |  Complex64  ->  Complex.zero  |  Int8_signed  ->  0 |
       Int8_unsigned -> 0 | Int16_signed -> 0 | Int16_unsigned -> 0 | Int32 -> 0l | Int64 -> 0L |
       Int -> 0 | Nativeint -> 0n | Char -> '\000'

       val float32 : (float, float32_elt) kind

       See Bigarray.char .

       val float64 : (float, float64_elt) kind

       See Bigarray.char .

       val complex32 : (Complex.t, complex32_elt) kind

       See Bigarray.char .

       val complex64 : (Complex.t, complex64_elt) kind

       See Bigarray.char .

       val int8_signed : (int, int8_signed_elt) kind

       See Bigarray.char .

       val int8_unsigned : (int, int8_unsigned_elt) kind

       See Bigarray.char .

       val int16_signed : (int, int16_signed_elt) kind

       See Bigarray.char .

       val int16_unsigned : (int, int16_unsigned_elt) kind

       See Bigarray.char .

       val int : (int, int_elt) kind

       See Bigarray.char .

       val int32 : (int32, int32_elt) kind

       See Bigarray.char .

       val int64 : (int64, int64_elt) kind

       See Bigarray.char .

       val nativeint : (nativeint, nativeint_elt) kind

       See Bigarray.char .

       val char : (char, int8_unsigned_elt) kind

       As  shown  by the types of the values above, Bigarrays of kind float32_elt and float64_elt
       are accessed using the OCaml type float .  Bigarrays  of  complex  kinds  complex32_elt  ,
       complex64_elt  are accessed with the OCaml type Complex.t . Bigarrays of integer kinds are
       accessed using the smallest OCaml  integer  type  large  enough  to  represent  the  array
       elements:  int  for  8-  and 16-bit integer Bigarrays, as well as OCaml-integer Bigarrays;
       int32 for 32-bit integer Bigarrays; int64 for 64-bit integer Bigarrays; and nativeint  for
       platform-native  integer Bigarrays.  Finally, Bigarrays of kind int8_unsigned_elt can also
       be accessed as arrays of characters instead of arrays of small integers, by using the kind
       value char instead of int8_unsigned .

       val kind_size_in_bytes : ('a, 'b) kind -> int

       kind_size_in_bytes k is the number of bytes used to store an element of type k .

       Since 4.03.0

   Array layouts
       type c_layout =
        | C_layout_typ

       See Bigarray.fortran_layout .

       type fortran_layout =
        | Fortran_layout_typ

       To facilitate interoperability with existing C and Fortran code, this library supports two
       different memory layouts for Bigarrays, one compatible with the C conventions,  the  other
       compatible with the Fortran conventions.

       In the C-style layout, array indices start at 0, and multi-dimensional arrays are laid out
       in row-major format.  That is, for a two-dimensional array, all  elements  of  row  0  are
       contiguous  in  memory, followed by all elements of row 1, etc.  In other terms, the array
       elements at (x,y) and (x, y+1) are adjacent in memory.

       In the Fortran-style layout, array indices start at 1, and  multi-dimensional  arrays  are
       laid  out  in  column-major format.  That is, for a two-dimensional array, all elements of
       column 0 are contiguous in memory, followed by all elements of column 1,  etc.   In  other
       terms, the array elements at (x,y) and (x+1, y) are adjacent in memory.

       Each  layout  style is identified at the type level by the phantom types Bigarray.c_layout
       and Bigarray.fortran_layout respectively.

   Supported layouts
       The GADT type 'a layout represents one of the two supported  memory  layouts:  C-style  or
       Fortran-style. Its constructors are re-exported as values below for backward-compatibility
       reasons.

       type 'a layout =
        | C_layout : c_layout layout
        | Fortran_layout : fortran_layout layout

       val c_layout : c_layout layout

       val fortran_layout : fortran_layout layout

   Generic arrays (of arbitrarily many dimensions)
       module Genarray : sig end

   Zero-dimensional arrays
       module Array0 : sig end

       Zero-dimensional arrays. The Array0 structure provides  operations  similar  to  those  of
       Bigarray.Genarray  ,  but  specialized  to  the  case of zero-dimensional arrays that only
       contain a single scalar value.  Statically knowing the number of dimensions of  the  array
       allows faster operations, and more precise static type-checking.

       Since 4.05.0

   One-dimensional arrays
       module Array1 : sig end

       One-dimensional  arrays.  The  Array1  structure  provides  operations similar to those of
       Bigarray.Genarray  ,  but  specialized  to  the  case  of  one-dimensional  arrays.   (The
       Bigarray.Array2  and  Bigarray.Array3  structures below provide operations specialized for
       two- and three-dimensional arrays.)  Statically knowing the number of  dimensions  of  the
       array allows faster operations, and more precise static type-checking.

   Two-dimensional arrays
       module Array2 : sig end

       Two-dimensional  arrays.  The  Array2  structure  provides  operations similar to those of
       Bigarray.Genarray , but specialized to the case of two-dimensional arrays.

   Three-dimensional arrays
       module Array3 : sig end

       Three-dimensional arrays. The Array3 structure provides operations  similar  to  those  of
       Bigarray.Genarray , but specialized to the case of three-dimensional arrays.

   Coercions between generic Bigarrays and fixed-dimension Bigarrays
       val genarray_of_array0 : ('a, 'b, 'c) Array0.t -> ('a, 'b, 'c) Genarray.t

       Return the generic Bigarray corresponding to the given zero-dimensional Bigarray.

       Since 4.05.0

       val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t

       Return the generic Bigarray corresponding to the given one-dimensional Bigarray.

       val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t

       Return the generic Bigarray corresponding to the given two-dimensional Bigarray.

       val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t

       Return the generic Bigarray corresponding to the given three-dimensional Bigarray.

       val array0_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

       Return  the  zero-dimensional Bigarray corresponding to the given generic Bigarray.  Raise
       Invalid_argument if the generic Bigarray does not have exactly zero dimension.

       Since 4.05.0

       val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t

       Return the one-dimensional Bigarray corresponding to the given  generic  Bigarray.   Raise
       Invalid_argument if the generic Bigarray does not have exactly one dimension.

       val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t

       Return  the  two-dimensional  Bigarray corresponding to the given generic Bigarray.  Raise
       Invalid_argument if the generic Bigarray does not have exactly two dimensions.

       val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t

       Return the three-dimensional Bigarray corresponding to the given generic Bigarray.   Raise
       Invalid_argument if the generic Bigarray does not have exactly three dimensions.

   Re-shaping Bigarrays
       val reshape : ('a, 'b, 'c) Genarray.t -> int array -> ('a, 'b, 'c) Genarray.t

       reshape b [|d1;...;dN|] converts the Bigarray b to a N -dimensional array of dimensions d1
       ...  dN .  The returned array and the original array b share their data and have the  same
       layout.  For instance, assuming that b is a one-dimensional array of dimension 12, reshape
       b [|3;4|] returns a two-dimensional array b' of dimensions 3 and 4.  If b  has  C  layout,
       the  element  (x,y)  of  b'  corresponds to the element x * 3 + y of b .  If b has Fortran
       layout, the element (x,y) of b' corresponds to the element x + (y - 1) * 4  of  b  .   The
       returned Bigarray must have exactly the same number of elements as the original Bigarray b
       .  That is, the product of the dimensions of  b  must  be  equal  to  i1  *  ...  *  iN  .
       Otherwise, Invalid_argument is raised.

       val reshape_0 : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array0.t

       Specialized version of Bigarray.reshape for reshaping to zero-dimensional arrays.

       Since 4.05.0

       val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t

       Specialized version of Bigarray.reshape for reshaping to one-dimensional arrays.

       val reshape_2 : ('a, 'b, 'c) Genarray.t -> int -> int -> ('a, 'b, 'c) Array2.t

       Specialized version of Bigarray.reshape for reshaping to two-dimensional arrays.

       val reshape_3 : ('a, 'b, 'c) Genarray.t -> int -> int -> int -> ('a, 'b, 'c) Array3.t

       Specialized version of Bigarray.reshape for reshaping to three-dimensional arrays.