Provided by: openbsd-inetd_0.20050402-6_i386 bug
 

NAME

      inetd - internet “super-server”
 

SYNOPSIS

      inetd [-d] [-l] [-E] [-R rate] [configuration file]
 

DESCRIPTION

      inetd should be run at boot time by /etc/rc (see rc(8)).  It then listens
      for connections on certain internet sockets.  When a connection is found
      on one of its sockets, it decides what service the socket corresponds to,
      and invokes a program to service the request.  After the program is fin‐
      ished, it continues to listen on the socket (except in some cases which
      will be described below).  Essentially, inetd allows running one daemon
      to invoke several others, reducing load on the system.
 
      The options are as follows:
 
      -d      Turns on debugging.
 
      -E      Prevents inetd from laundering the environment.  Without this
              option a selection of environent variables believed by the
              authors to be harmful, including PATH, will be removed and not
              inherited by services.
 
      -l      Turns on libwrap connection logging. Internal services cannot be
              wrapped.  When enabled, /usr/sbin/tcpd is silently not executed
              even if present in /etc/inetd.conf.
 
      -R rate
              Specify the maximum number of times a service can be invoked in
              one minute; the default is 256.
 
      Upon execution, inetd reads its configuration information from a configu‐
      ration file which, by default, is /etc/inetd.conf.  There must be an
      entry for each field of the configuration file, with entries for each
      field separated by a tab or a space.  Comments are denoted by a “#” at
      the beginning of a line.  The fields of the configuration file are as
      follows:
 
            service name
            socket type
            protocol[,sndbuf=size][,rcvbuf=size]
            wait/nowait[.max]
            user[.group] or user[:group]
            server program
            server program arguments
 
      To specify a Sun-RPC based service, the entry would contain these fields.
 
            service name/version
            socket type
            rpc/protocol[,sndbuf=size][,rcvbuf=size]
            wait/nowait[.max]
            user[.group] or user[:group]
            server program
            server program arguments
 
      For internet services, the first field of the line may also have a host
      address specifier prefixed to it, separated from the service name by a
      colon.  If this is done, the string before the colon in the first field
      indicates what local address inetd should use when listening for that
      service.  Multiple local addresses can be specified on the same line,
      separated by commas.  Numeric IP addresses in dotted-quad notation can be
      used as well as symbolic hostnames.  Symbolic hostnames are looked up
      using gethostbyname().  If a hostname has multiple address mappings,
      inetd creates a socket to listen on each address.
 
      The single character “*” indicates INADDR_ANY, meaning “all local
      addresses”.  To avoid repeating an address that occurs frequently, a line
      with a host address specifier and colon, but no further fields, causes
      the host address specifier to be remembered and used for all further
      lines with no explicit host specifier (until another such line or the end
      of the file).  A line
            *:
      is implicitly provided at the top of the file; thus, traditional configu‐
      ration files (which have no host address specifiers) will be interpreted
      in the traditional manner, with all services listened for on all local
      addresses.  If the protocol is “unix”, this value is ignored.
 
      The service name entry is the name of a valid service in the file
      /etc/services.  For “internal” services (discussed below), the service
      name must be the official name of the service (that is, the first entry
      in /etc/services).  When used to specify a Sun-RPC based service, this
      field is a valid RPC service name in the file /etc/rpc.  The part on the
      right of the “/” is the RPC version number.  This can simply be a single
      numeric argument or a range of versions.  A range is bounded by the low
      version to the high version - “rusers/1-3”.  For UNIX domain sockets this
      field specifies the path name of the socket.
 
      The socket type should be one of “stream”, “dgram”, “raw”, “rdm”, or
      “seqpacket”, depending on whether the socket is a stream, datagram, raw,
      reliably delivered message, or sequenced packet socket.
 
      The protocol must be a valid protocol as given in /etc/protocols.  Exam‐
      ples might be “unix”, “tcp” or “udp”.  RPC based services are specified
      with the “rpc/tcp” or “rpc/udp” service type.  “tcp” and “udp” will be
      recognized as “TCP or UDP over default IP version”.  This is currently
      IPv4, but in the future it will be IPv6.  If you need to specify IPv4 or
      IPv6 explicitly, use something like “tcp4” or “udp6”.  A protocol of
      “unix” is used to specify a socket in the UNIX domain.
 
      In addition to the protocol, the configuration file may specify the send
      and receive socket buffer sizes for the listening socket.  This is espe‐
      cially useful for TCP as the window scale factor, which is based on the
      receive socket buffer size, is advertised when the connection handshake
      occurs, thus the socket buffer size for the server must be set on the
      listen socket.  By increasing the socket buffer sizes, better TCP perfor‐
      mance may be realized in some situations.  The socket buffer sizes are
      specified by appending their values to the protocol specification as fol‐
      lows:
 
            tcp,rcvbuf=16384
            tcp,sndbuf=64k
            tcp,rcvbuf=64k,sndbuf=1m
 
      A literal value may be specified, or modified using ‘k’ to indicate kilo‐
      bytes or ‘m’ to indicate megabytes.
 
      The wait/nowait entry is used to tell inetd if it should wait for the
      server program to return, or continue processing connections on the
      socket.  If a datagram server connects to its peer, freeing the socket so
      inetd can receive further messages on the socket, it is said to be a
      “multi-threaded” server, and should use the “nowait” entry.  For datagram
      servers which process all incoming datagrams on a socket and eventually
      time out, the server is said to be “single-threaded” and should use a
      “wait” entry.  comsat(8) (biff(1)) and talkd(8) are both examples of the
      latter type of datagram server.  tftpd(8) is an exception; it is a data‐
      gram server that establishes pseudo-connections.  It must be listed as
      “wait” in order to avoid a race; the server reads the first packet, cre‐
      ates a new socket, and then forks and exits to allow inetd to check for
      new service requests to spawn new servers.  The optional “max” suffix
      (separated from “wait” or “nowait” by a dot) specifies the maximum number
      of server instances that may be spawned from inetd within an interval of
      60 seconds.  When omitted, “max” defaults to 256.
 
      Stream servers are usually marked as “nowait” but if a single server pro‐
      cess is to handle multiple connections, it may be marked as “wait”.  The
      master socket will then be passed as fd 0 to the server, which will then
      need to accept the incoming connection.  The server should eventually
      time out and exit when no more connections are active.  inetd will con‐
      tinue to listen on the master socket for connections, so the server
      should not close it when it exits.
 
      The user entry should contain the user name of the user as whom the
      server should run.  This allows for servers to be given less permission
      than root.  An optional group name can be specified by appending a dot to
      the user name followed by the group name.  This allows for servers to run
      with a different (primary) group ID than specified in the password file.
      If a group is specified and user is not root, the supplementary groups
      associated with that user will still be set.
 
      The server program entry should contain the pathname of the program which
      is to be executed by inetd when a request is found on its socket.  If
      inetd provides this service internally, this entry should be “internal”.
 
      The server program arguments should be just as arguments normally are,
      starting with argv[0], which is the name of the program.  If the service
      is provided internally, the word “internal” should take the place of this
      entry.
 
      inetd provides several “trivial” services internally by use of routines
      within itself.  These services are “echo”, “discard”, “chargen” (charac‐
      ter generator), “daytime” (human readable time), and “time” (machine
      readable time, in the form of the number of seconds since midnight, Jan‐
      uary 1, 1900).  All of these services are TCP based.  For details of
      these services, consult the appropriate RFC from the Network Information
      Center.
 
      inetd rereads its configuration file when it receives a hangup signal,
      SIGHUP.  Services may be added, deleted or modified when the configura‐
      tion file is reread.  inetd creates a file /var/run/inetd.pid that con‐
      tains its process identifier.
 
    libwrap
      Support for TCP wrappers is included with inetd to provide built-in tcpd-
      like access control functionality.  An external tcpd program is not
      needed.  You do not need to change the /etc/inetd.conf server-program
      entry to enable this capability.  inetd uses /etc/hosts.allow and
      /etc/hosts.deny for access control facility configurations, as described
      in hosts_access(5).
 
    IPv6 TCP/UDP behavior
      If you wish to run a server for IPv4 and IPv6 traffic, you’ll need to run
      two separate processes for the same server program, specified as two sep‐
      arate lines in inetd.conf, for “tcp4” and “tcp6”.
 
      Under various combinations of IPv4/v6 daemon settings, inetd will behave
      as follows:
            If you have only one server on “tcp4”, IPv4 traffic will be routed to
          the server.  IPv6 traffic will not be accepted.
            If you have two servers on “tcp4” and “tcp6”, IPv4 traffic will be
          routed to the server on “tcp4”, and IPv6 traffic will go to server on
          “tcp6”.
            If you have only one server on “tcp6”, only IPv6 traffic will be
          routed to the server.
 
          The special “tcp46” parameter can be used for obsolete servers which
          require to receive IPv4 connections mapped in an IPv6 socket. Its
          usage is discouraged.
      fingerd(8), ftpd(8), identd(8), rshd(8), talkd(8), telnetd(8), tftpd(8)
 

HISTORY

      The inetd command appeared in 4.3BSD.  Support for Sun-RPC based services
      is modelled after that provided by SunOS 4.1.  IPv6 support was added by
      the KAME project in 1999.
 
      Marco d’Itri ported this code from OpenBSD in summer 2002 and added
      socket buffers tuning and libwrap support from the NetBSD source tree.
 

BUGS

      On Linux systems, the daemon cannot reload its configuration and needs to
      be restarted when the host address for a service is changed between “*”
      and a specific address.
 
      Host address specifiers, while they make conceptual sense for RPC ser‐
      vices, do not work entirely correctly.  This is largely because the
      portmapper interface does not provide a way to register different ports
      for the same service on different local addresses.  Provided you never
      have more than one entry for a given RPC service, everything should work
      correctly.  (Note that default host address specifiers do apply to RPC
      lines with no explicit specifier.)
 
      “rpc” on IPv6 is not tested enough.  Kerberos support on IPv6 is not
      tested.