Provided by: libpdl-linearalgebra-perl_0.26-2build1_amd64 bug

NAME

       PDL::LinearAlgebra::Complex - PDL interface to the lapack linear algebra programming
       library (complex number)

SYNOPSIS

        use PDL::Complex
        use PDL::LinearAlgebra::Complex;

        $a = r2C random (100,100);
        $s = r2C zeroes(100);
        $u = r2C zeroes(100,100);
        $v = r2C zeroes(100,100);
        $info = 0;
        $job = 0;
        cgesdd($a, $job, $info, $s , $u, $v);

        # or, using native complex numbers:
        use PDL;
        use PDL::LinearAlgebra::Complex;
        $a = random(cdouble, 100, 100);
        $s = zeroes(cdouble, 100);
        $u = zeroes(cdouble, 100, 100);
        $v = zeroes(cdouble, 100, 100);
        $info = 0;
        $job = 0;
        cgesdd($a, $job, $info, $s , $u, $v);

DESCRIPTION

       This module provides an interface to parts of the lapack library (complex numbers).  These
       routines accept either float or double ndarrays.  #line 79 "Complex.pm"

FUNCTIONS

   cgtsv
         Signature: ([phys]DL(2,n); [phys]D(2,n); [phys]DU(2,n); [io,phys]B(2,n,nrhs); int [o,phys]info())

       Solves the equation

               A * X = B

       where A is an "n" by "n" tridiagonal matrix, by Gaussian elimination with partial
       pivoting, and B is an "n" by "nrhs" matrix.

       Note that the equation "A**T*X = B"  may be solved by interchanging the order of the
       arguments DU and DL.

       NB This differs from the LINPACK function "cgtsl" in that "DL" starts from its first
       element, while the LINPACK equivalent starts from its second element.

           Arguments
           =========

           DL:   On entry, DL must contain the (n-1) sub-diagonal elements of A.

                 On exit, DL is overwritten by the (n-2) elements of the
                 second super-diagonal of the upper triangular matrix U from
                 the LU factorization of A, in DL(1), ..., DL(n-2).

           D:    On entry, D must contain the diagonal elements of A.

                 On exit, D is overwritten by the n diagonal elements of U.

           DU:   On entry, DU must contain the (n-1) super-diagonal elements of A.

                 On exit, DU is overwritten by the (n-1) elements of the
                 first super-diagonal of the U.

           B:    On entry, the n by nrhs matrix of right hand side matrix B.
                 On exit, if info = 0, the n by nrhs solution matrix X.

           info:   = 0:  successful exit
                   < 0:  if info = -i, the i-th argument had an illegal value
                   > 0:  if info = i, U(i,i) is exactly zero, and the solution
                         has not been computed.  The factorization has not been
                         completed unless i = n.

        use PDL::Complex;
        $dl = random(float, 9) + random(float, 9) * i;
        $d = random(float, 10) + random(float, 10) * i;
        $du = random(float, 9) + random(float, 9) * i;
        $b = random(10,5) + random(10,5) * i;
        cgtsv($dl, $d, $du, $b, ($info=null));
        print "X is:\n$b" unless $info;

   cgesvd
         Signature: ([io,phys]A(2,m,n); int jobu(); int jobvt(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

       Complex version of gesvd.

       The SVD is written

        A = U * SIGMA * ConjugateTranspose(V)

   cgesdd
         Signature: ([io,phys]A(2,m,n); int job(); [o,phys]s(r); [o,phys]U(2,p,q); [o,phys]VT(2,s,t); int [o,phys]info())

       Complex version of gesdd.

       The SVD is written

        A = U * SIGMA * ConjugateTranspose(V)

   cggsvd
         Signature: ([io,phys]A(2,m,n); int jobu(); int jobv(); int jobq(); [io,phys]B(2,p,n); int [o,phys]k(); int [o,phys]l();[o,phys]alpha(n);[o,phys]beta(n); [o,phys]U(2,q,r); [o,phys]V(2,s,t); [o,phys]Q(2,u,v); int [o,phys]iwork(n); int [o,phys]info())

       Complex version of ggsvd

   cgeev
         Signature: ([phys]A(2,n,n); int jobvl(); int jobvr(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]info())

       Complex version of geev

   cgeevx
         Signature: ([io,phys]A(2,n,n);  int jobvl(); int jobvr(); int balance(); int sense(); [o,phys]w(2,n); [o,phys]vl(2,m,m); [o,phys]vr(2,p,p); int [o,phys]ilo(); int [o,phys]ihi(); [o,phys]scale(n); [o,phys]abnrm(); [o,phys]rconde(q); [o,phys]rcondv(r); int [o,phys]info())

       Complex version of geevx

   cggev
         Signature: ([phys]A(2,n,n); int jobvl();int jobvr();[phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]info())

       Complex version of ggev

   cggevx
         Signature: ([io,phys]A(2,n,n);int balanc();int jobvl();int jobvr();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VL(2,m,m);[o,phys]VR(2,p,p);int [o,phys]ilo();int [o,phys]ihi();[o,phys]lscale(n);[o,phys]rscale(n);[o,phys]abnrm();[o,phys]bbnrm();[o,phys]rconde(r);[o,phys]rcondv(s);int [o,phys]info())

       Complex version of ggevx

   cgees
         Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); [o,phys]w(2,n); [o,phys]vs(2,p,p); int [o,phys]sdim(); int [o,phys]info())

       Complex version of gees

           select_func:
                   If sort = 1, select_func is used to select eigenvalues to sort
                   to the top left of the Schur form.
                   If sort = 0, select_func is not referenced.
                   An complex eigenvalue w is selected if
                   select_func(PDL::Complex(w)) is true;
                   Note that a selected complex eigenvalue may no longer
                   satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
                   ordering may change the value of complex eigenvalues
                   (especially if the eigenvalue is ill-conditioned); in this
                   case info is set to N+2.

   cgeesx
         Signature: ([io,phys]A(2,n,n);  int jobvs(); int sort(); int sense(); [o,phys]w(2,n);[o,phys]vs(2,p,p); int [o,phys]sdim(); [o,phys]rconde();[o,phys]rcondv(); int [o,phys]info())

       Complex version of geesx

           select_func:
                   If sort = 1, select_func is used to select eigenvalues to sort
                   to the top left of the Schur form.
                   If sort = 0, select_func is not referenced.
                   An complex eigenvalue w is selected if
                   select_func(PDL::Complex(w)) is true;
                   Note that a selected complex eigenvalue may no longer
                   satisfy select_func(PDL::Complex(w)) = 1 after ordering, since
                   ordering may change the value of complex eigenvalues
                   (especially if the eigenvalue is ill-conditioned); in this
                   case info is set to N+2.

   cgges
         Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();int [o,phys]info())

       Complex version of ggees

           select_func:
                   If sort = 1, select_func is used to select eigenvalues to sort
                   to the top left of the Schur form.
                   If sort = 0, select_func is not referenced.
                   An eigenvalue w = w/beta is selected if
                   select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
                   Note that a selected complex eigenvalue may no longer
                   satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
                   ordering may change the value of complex eigenvalues
                   (especially if the eigenvalue is ill-conditioned); in this
                   case info is set to N+2.

   cggesx
         Signature: ([io,phys]A(2,n,n); int jobvsl();int jobvsr();int sort();int sense();[io,phys]B(2,n,n);[o,phys]alpha(2,n);[o,phys]beta(2,n);[o,phys]VSL(2,m,m);[o,phys]VSR(2,p,p);int [o,phys]sdim();[o,phys]rconde(q);[o,phys]rcondv(r);int [o,phys]info())

       Complex version of ggeesx

           select_func:
                   If sort = 1, select_func is used to select eigenvalues to sort
                   to the top left of the Schur form.
                   If sort = 0, select_func is not referenced.
                   An eigenvalue w = w/beta is selected if
                   select_func(PDL::Complex(w), PDL::Complex(beta)) is true;
                   Note that a selected complex eigenvalue may no longer
                   satisfy select_func(PDL::Complex(w),PDL::Complex(beta)) = 1 after ordering, since
                   ordering may change the value of complex eigenvalues
                   (especially if the eigenvalue is ill-conditioned); in this
                   case info is set to N+3.

   cheev
         Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

       Complex version of syev for Hermitian matrix

   cheevd
         Signature: ([io,phys]A(2,n,n);  int jobz(); int uplo(); [o,phys]w(n); int [o,phys]info())

       Complex version of syevd for Hermitian matrix

   cheevx
         Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]ifail(r); int [o,phys]info())

       Complex version of syevx for Hermitian matrix

   cheevr
         Signature: ([phys]A(2,n,n);  int jobz(); int range(); int uplo(); [phys]vl(); [phys]vu(); int [phys]il(); int [phys]iu(); [phys]abstol(); int [o,phys]m(); [o,phys]w(n); [o,phys]z(2,p,q);int [o,phys]isuppz(r); int [o,phys]info())

       Complex version of syevr for Hermitian matrix

   chegv
         Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

       Complex version of sygv for Hermitian matrix

   chegvd
         Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz(); int uplo();[io,phys]B(2,n,n);[o,phys]w(n); int [o,phys]info())

       Complex version of sygvd for Hermitian matrix

   chegvx
         Signature: ([io,phys]A(2,n,n);int [phys]itype();int jobz();int range(); int uplo();[io,phys]B(2,n,n);[phys]vl();[phys]vu();int [phys]il();int [phys]iu();[phys]abstol();int [o,phys]m();[o,phys]w(n); [o,phys]Z(2,p,q);int [o,phys]ifail(r);int [o,phys]info())

       Complex version of sygvx for Hermitian matrix

   cgesv
         Signature: ([io,phys]A(2,n,n);  [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of gesv

   cgesvx
         Signature: ([io,phys]A(2,n,n); int trans(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); int [io]equed(); [io,phys]r(n); [io,phys]c(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); [o,phys]rpvgrw(); int [o,phys]info())

       Complex version of gesvx.

           trans:  Specifies the form of the system of equations:
                   = 0:  A * X = B     (No transpose)
                   = 1:  A' * X = B  (Transpose)
                   = 2:  A**H * X = B  (Conjugate transpose)

   csysv
         Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sysv

   csysvx
         Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

       Complex version of sysvx

   chesv
         Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sysv for Hermitian matrix

   chesvx
         Signature: ([phys]A(2,n,n); int uplo(); int fact(); [phys]B(2,n,m); [io,phys]af(2,n,n); int [io,phys]ipiv(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

       Complex version of sysvx for Hermitian matrix

   cposv
         Signature: ([io,phys]A(2,n,n);  int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

       Complex version of posv for Hermitian positive definite matrix

   cposvx
         Signature: ([io,phys]A(2,n,n); int uplo(); int fact(); [io,phys]B(2,n,m); [io,phys]af(2,n,n); int [io]equed(); [io,phys]s(n); [o,phys]X(2,n,m); [o,phys]rcond(); [o,phys]ferr(m); [o,phys]berr(m); int [o,phys]info())

       Complex version of posvx for Hermitian positive definite matrix

   cgels
         Signature: ([io,phys]A(2,m,n); int trans(); [io,phys]B(2,p,q);int [o,phys]info())

       Solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix
       A, or its conjugate-transpose.  Complex version of gels.

           trans:  = 0: the linear system involves A;
                   = 1: the linear system involves A**H.

   cgelsy
         Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); int [io,phys]jpvt(n); int [o,phys]rank();int [o,phys]info())

       Complex version of gelsy

   cgelss
         Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

       Complex version of gelss

   cgelsd
         Signature: ([io,phys]A(2,m,n); [io,phys]B(2,p,q); [phys]rcond(); [o,phys]s(r); int [o,phys]rank();int [o,phys]info())

       Complex version of gelsd

   cgglse
         Signature: ([phys]A(2,m,n); [phys]B(2,p,n);[io,phys]c(2,m);[phys]d(2,p);[o,phys]x(2,n);int [o,phys]info())

       Complex version of gglse

   cggglm
         Signature: ([phys]A(2,n,m); [phys]B(2,n,p);[phys]d(2,n);[o,phys]x(2,m);[o,phys]y(2,p);int [o,phys]info())

       Complex version of ggglm

   cgetrf
         Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

       Complex version of getrf

   cgetf2
         Signature: ([io,phys]A(2,m,n); int [o,phys]ipiv(p); int [o,phys]info())

       Complex version of getf2

   csytrf
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sytrf

   csytf2
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sytf2

   cchetrf
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sytrf for Hermitian matrix

   chetf2
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]ipiv(n); int [o,phys]info())

       Complex version of sytf2 for Hermitian matrix

   cpotrf
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

       Complex version of potrf for Hermitian positive definite matrix

   cpotf2
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

       Complex version of potf2 for Hermitian positive definite matrix

   cgetri
         Signature: ([io,phys]A(2,n,n); int [phys]ipiv(n); int [o,phys]info())

       Complex version of getri

   csytri
         Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

       Complex version of sytri

   chetri
         Signature: ([io,phys]A(2,n,n); int uplo(); int [phys]ipiv(n); int [o,phys]info())

       Complex version of sytri for Hermitian matrix

   cpotri
         Signature: ([io,phys]A(2,n,n); int uplo(); int [o,phys]info())

       Complex version of potri

   ctrtri
         Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

       Complex version of trtri

   ctrti2
         Signature: ([io,phys]A(2,n,n); int uplo(); int diag(); int [o,phys]info())

       Complex version of trti2

   cgetrs
         Signature: ([phys]A(2,n,n); int trans(); [io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

       Complex version of getrs

           Arguments
           =========
               trans:   = 0:  No transpose;
                        = 1:  Transpose;
                        = 2:  Conjugate transpose;

   csytrs
         Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

       Complex version of sytrs

   chetrs
         Signature: ([phys]A(2,n,n); int uplo();[io,phys]B(2,n,m); int [phys]ipiv(n); int [o,phys]info())

       Complex version of sytrs for Hermitian matrix

   cpotrs
         Signature: ([phys]A(2,n,n); int uplo(); [io,phys]B(2,n,m); int [o,phys]info())

       Complex version of potrs for Hermitian positive definite matrix

   ctrtrs
         Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag();[io,phys]B(2,n,m); int [o,phys]info())

       Complex version of trtrs

           Arguments
           =========
               trans:   = 0:  No transpose;
                        = 1:  Transpose;
                        = 2:  Conjugate transpose;

   clatrs
         Signature: ([phys]A(2,n,n); int uplo(); int trans(); int diag(); int normin();[io,phys]x(2,n); [o,phys]scale();[io,phys]cnorm(n);int [o,phys]info())

       Complex version of latrs

           Arguments
           =========
               trans:   = 0:  No transpose;
                        = 1:  Transpose;
                        = 2:  Conjugate transpose;

   cgecon
         Signature: ([phys]A(2,n,n); int norm(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

       Complex version of gecon

   csycon
         Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

       Complex version of sycon

   checon
         Signature: ([phys]A(2,n,n); int uplo(); int ipiv(n); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

       Complex version of sycon for Hermitian matrix

   cpocon
         Signature: ([phys]A(2,n,n); int uplo(); [phys]anorm(); [o,phys]rcond();int [o,phys]info())

       Complex version of pocon for Hermitian positive definite matrix

   ctrcon
         Signature: ([phys]A(2,n,n); int norm();int uplo();int diag(); [o,phys]rcond();int [o,phys]info())

       Complex version of trcon

   cgeqp3
         Signature: ([io,phys]A(2,m,n); int [io,phys]jpvt(n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of geqp3

   cgeqrf
         Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of geqrf

   cungqr
         Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

       Complex version of orgqr

   cunmqr
         Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

       Complex version of ormqr. Here trans = 1 means conjugate transpose.

   cgelqf
         Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of gelqf

   cunglq
         Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

       Complex version of orglq

   cunmlq
         Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

       Complex version of ormlq. Here trans = 1 means conjugate transpose.

   cgeqlf
         Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of geqlf

   cungql
         Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

       Complex version of orgql.

   cunmql
         Signature: ([phys]A(2,p,k); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

       Complex version of ormql. Here trans = 1 means conjugate transpose.

   cgerqf
         Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of gerqf

   cungrq
         Signature: ([io,phys]A(2,m,n); [phys]tau(2,k); int [o,phys]info())

       Complex version of orgrq.

   cunmrq
         Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

       Complex version of ormrq. Here trans = 1 means conjugate transpose.

   ctzrzf
         Signature: ([io,phys]A(2,m,n); [o,phys]tau(2,k); int [o,phys]info())

       Complex version of tzrzf

   cunmrz
         Signature: ([phys]A(2,k,p); int side(); int trans(); [phys]tau(2,k); [io,phys]C(2,m,n);int [o,phys]info())

       Complex version of ormrz. Here trans = 1 means conjugate transpose.

   cgehrd
         Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[o,phys]tau(2,k); int [o,phys]info())

       Complex version of gehrd

   cunghr
         Signature: ([io,phys]A(2,n,n); int [phys]ilo();int [phys]ihi();[phys]tau(2,k); int [o,phys]info())

       Complex version of orghr

   chseqr
         Signature: ([io,phys]H(2,n,n); int job();int compz();int [phys]ilo();int [phys]ihi();[o,phys]w(2,n); [o,phys]Z(2,m,m); int [o,phys]info())

       Complex version of hseqr

   ctrevc
         Signature: ([io,phys]T(2,n,n); int side();int howmny();int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

       Complex version of trevc

   ctgevc
         Signature: ([io,phys]A(2,n,n); int side();int howmny(); [io,phys]B(2,n,n);int [phys]select(q);[io,phys]VL(2,m,r); [io,phys]VR(2,p,s);int [o,phys]m(); int [o,phys]info())

       Complex version of tgevc

   cgebal
         Signature: ([io,phys]A(2,n,n); int job(); int [o,phys]ilo();int [o,phys]ihi();[o,phys]scale(n); int [o,phys]info())

       Complex version of gebal

   clange
         Signature: ([phys]A(2,n,m); int norm(); [o]b())

       Complex version of lange

   clansy
         Signature: ([phys]A(2, n,n); int uplo(); int norm(); [o]b())

       Complex version of lansy

   clantr
         Signature: ([phys]A(2,m,n);int uplo();int norm();int diag();[o]b())

       Complex version of lantr

   cgemm
         Signature: ([phys]A(2,m,n); int transa(); int transb(); [phys]B(2,p,q);[phys]alpha(2); [phys]beta(2); [io,phys]C(2,r,s))

       Complex version of gemm.

           Arguments
           =========
               transa:  = 0:  No transpose;
                        = 1:  Transpose;
                        = 2:  Conjugate transpose;

               transb:  = 0:  No transpose;
                        = 1:  Transpose;
                        = 2:  Conjugate transpose;

   cmmult
         Signature: ([phys]A(2,m,n); [phys]B(2,p,m); [o,phys]C(2,p,n))

       Complex version of mmult

   ccrossprod
         Signature: ([phys]A(2,n,m); [phys]B(2,p,m); [o,phys]C(2,p,n))

       Complex version of crossprod

   csyrk
         Signature: ([phys]A(2,m,n); int uplo(); int trans(); [phys]alpha(2); [phys]beta(2); [io,phys]C(2,p,p))

       Complex version of syrk

   cdot
         Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

       Complex version of dot

   cdotc
         Signature: ([phys]a(2,n);int [phys]inca();[phys]b(2,n);int [phys]incb();[o,phys]c(2))

       Forms the dot product of two vectors, conjugating the first vector.

   caxpy
         Signature: ([phys]a(2,n);int [phys]inca();[phys] alpha(2);[io,phys]b(2,n);int [phys]incb())

       Complex version of axpy

   cnrm2
         Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

       Complex version of nrm2

   casum
         Signature: ([phys]a(2,n);int [phys]inca();[o,phys]b())

       Complex version of asum

   cscal
         Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale(2))

       Complex version of scal

   sscal
         Signature: ([io,phys]a(2,n);int [phys]inca();[phys]scale())

       Scales a complex vector by a real constant.

       sscal ignores the bad-value flag of the input ndarrays.  It will set the bad-value flag of
       all output ndarrays if the flag is set for any of the input ndarrays.

   crotg
         Signature: ([io,phys]a(2);[phys]b(2);[o,phys]c(); [o,phys]s(2))

       Complex version of rotg

   clacpy
         Signature: ([phys]A(2,m,n); int uplo(); [o,phys]B(2,p,n))

       Complex version of lacpy

   claswp
         Signature: ([io,phys]A(2,m,n); int [phys]k1(); int [phys]k2(); int [phys]ipiv(p);int [phys]inc())

       Complex version of laswp

   ctricpy
         Signature: (A(c=2,m,n);int uplo();[o] C(c=2,m,n))

       Copy triangular part to another matrix. If uplo == 0 copy upper triangular part.

       ctricpy does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   cmstack
         Signature: (x(c,n,m);y(c,n,p);[o]out(c,n,q))

       Combine two 3D ndarrays into a single ndarray.  This routine does backward and forward
       dataflow automatically.

       cmstack does not process bad values.  It will set the bad-value flag of all output
       ndarrays if the flag is set for any of the input ndarrays.

   ccharpol
         Signature: ([phys]A(c=2,n,n);[phys,o]Y(c=2,n,n);[phys,o]out(c=2,p);)

       Complex version of charpol

AUTHOR

       Copyright (C) Grégory Vanuxem 2005-2018.

       This library is free software; you can redistribute it and/or modify it under the terms of
       the Perl Artistic License as in the file Artistic_2 in this distribution.