Provided by: libjpeg-progs_6b-14build1_i386 bug


       cjpeg - compress an image file to a JPEG file


       cjpeg [ options ] [ filename ]


       cjpeg compresses the named image file, or the standard input if no file
       is named, and produces a JPEG/JFIF file on the  standard  output.   The
       currently supported input file formats are: PPM (PBMPLUS color format),
       PGM (PBMPLUS gray-scale format),  BMP,  Targa,  and  RLE  (Utah  Raster
       Toolkit  format).   (RLE  is  supported  only  if  the  URT  library is


       All switch names may be abbreviated; for  example,  -grayscale  may  be
       written  -gray or -gr.  Most of the "basic" switches can be abbreviated
       to as little as one letter.  Upper and lower case are equivalent  (thus
       -BMP  is the same as -bmp).  British spellings are also accepted (e.g.,
       -greyscale), though for brevity these are not mentioned below.

       The basic switches are:

       -quality N
              Scale quantization tables to adjust image quality.  Quality is 0
              (worst)  to  100  (best);  default  is  75.  (See below for more

              Create monochrome JPEG file from color input.  Be  sure  to  use
              this switch when compressing a grayscale BMP file, because cjpeg
              isn’t bright enough to notice  whether  a  BMP  file  uses  only
              shades of gray.  By saying -grayscale, you’ll get a smaller JPEG
              file that takes less time to process.

              Perform optimization of entropy  encoding  parameters.   Without
              this,  default  encoding parameters are used.  -optimize usually
              makes the JPEG file a little smaller, but  cjpeg  runs  somewhat
              slower  and  needs much more memory.  Image quality and speed of
              decompression are unaffected by -optimize.

              Create progressive JPEG file (see below).

       -targa Input file  is  Targa  format.   Targa  files  that  contain  an
              "identification"  field  will not be automatically recognized by
              cjpeg; for such files you must  specify  -targa  to  make  cjpeg
              treat  the  input  as  Targa  format.  For most Targa files, you
              won’t need this switch.

       The -quality switch lets you trade off  compressed  file  size  against
       quality of the reconstructed image: the higher the quality setting, the
       larger the JPEG file, and the closer the output image will  be  to  the
       original  input.   Normally  you want to use the lowest quality setting
       (smallest   file)   that   decompresses   into    something    visually
       indistinguishable  from  the  original  image.   For  this  purpose the
       quality setting should be between 50 and 95; the default of 75 is often
       about  right.   If  you  see defects at -quality 75, then go up 5 or 10
       counts at a time until you are  happy  with  the  output  image.   (The
       optimal setting will vary from one image to another.)

       -quality  100 will generate a quantization table of all 1’s, minimizing
       loss in the quantization step (but there is still information  loss  in
       subsampling,  as  well  as  roundoff error).  This setting is mainly of
       interest for experimental purposes.  Quality values above about 95  are
       not  recommended  for  normal  use;  the  compressed  file size goes up
       dramatically for hardly any gain in output image quality.

       In the other direction, quality values below 50 will produce very small
       files of low image quality.  Settings around 5 to 10 might be useful in
       preparing an index of a large image library, for example.  Try -quality
       2 (or so) for some amusing Cubist effects.  (Note: quality values below
       about 25 generate 2-byte  quantization  tables,  which  are  considered
       optional  in the JPEG standard.  cjpeg emits a warning message when you
       give such a quality value, because some  other  JPEG  programs  may  be
       unable  to  decode  the  resulting  file.  Use -baseline if you need to
       ensure compatibility at low quality values.)

       The -progressive switch creates a "progressive  JPEG"  file.   In  this
       type  of  JPEG file, the data is stored in multiple scans of increasing
       quality.  If the file is being transmitted over a  slow  communications
       link, the decoder can use the first scan to display a low-quality image
       very quickly, and can then improve the  display  with  each  subsequent
       scan.  The final image is exactly equivalent to a standard JPEG file of
       the same quality setting, and the total file size is about the same ---
       often  a  little  smaller.  Caution: progressive JPEG is not yet widely
       implemented, so many decoders will be unable to view a progressive JPEG
       file at all.

       Switches for advanced users:

       -dct int
              Use integer DCT method (default).

       -dct fast
              Use fast integer DCT (less accurate).

       -dct float
              Use  floating-point  DCT  method.   The  float  method  is  very
              slightly more accurate than the int method, but is  much  slower
              unless your machine has very fast floating-point hardware.  Also
              note that results of the floating-point method may vary slightly
              across  machines, while the integer methods should give the same
              results everywhere.   The  fast  integer  method  is  much  less
              accurate than the other two.

       -restart N
              Emit  a  JPEG  restart  marker  every N MCU rows, or every N MCU
              blocks if "B" is  attached  to  the  number.   -restart  0  (the
              default) means no restart markers.

       -smooth N
              Smooth the input image to eliminate dithering noise.  N, ranging
              from 1 to 100, indicates the  strength  of  smoothing.   0  (the
              default) means no smoothing.

       -maxmemory N
              Set  limit  for  amount  of  memory  to  use in processing large
              images.  Value is in thousands of bytes, or millions of bytes if
              "M"  is  attached  to  the number.  For example, -max 4m selects
              4000000 bytes.  If more space is needed, temporary files will be

       -outfile name
              Send output image to the named file, not to standard output.

              Enable  debug  printout.   More  -v’s  give  more output.  Also,
              version information is printed at startup.

       -debug Same as -verbose.

       The -restart option inserts extra markers that allow a JPEG decoder  to
       resynchronize after a transmission error.  Without restart markers, any
       damage to a compressed file will usually ruin the image from the  point
       of  the error to the end of the image; with restart markers, the damage
       is usually confined to the portion of the image up to the next  restart
       marker.   Of  course,  the  restart  markers  occupy  extra  space.  We
       recommend -restart  1  for  images  that  will  be  transmitted  across
       unreliable networks such as Usenet.

       The  -smooth  option  filters  the input to eliminate fine-scale noise.
       This is often  useful  when  converting  dithered  images  to  JPEG:  a
       moderate smoothing factor of 10 to 50 gets rid of dithering patterns in
       the input file, resulting in a smaller JPEG file and  a  better-looking
       image.   Too  large  a  smoothing  factor  will visibly blur the image,

       Switches for wizards:

              Force baseline-compatible quantization tables to  be  generated.
              This  clamps  quantization  values to 8 bits even at low quality
              settings.  (This switch is  poorly  named,  since  it  does  not
              ensure  that the output is actually baseline JPEG.  For example,
              you can use -baseline and -progressive together.)

       -qtables file
              Use the quantization tables given in the specified text file.

       -qslots N[,...]
              Select which quantization table to use for each color component.

       -sample HxV[,...]
              Set JPEG sampling factors for each color component.

       -scans file
              Use the scan script given in the specified text file.

       The  "wizard"  switches are intended for experimentation with JPEG.  If
       you don’t know what you are doing, dont use them.  These switches  are
       documented further in the file wizard.doc.


       This  example  compresses the PPM file foo.ppm with a quality factor of
       60 and saves the output as foo.jpg:

              cjpeg -quality 60 foo.ppm > foo.jpg


       Color GIF files are not the  ideal  input  for  JPEG;  JPEG  is  really
       intended  for  compressing  full-color (24-bit) images.  In particular,
       don’t try to convert cartoons, line drawings,  and  other  images  that
       have  only  a few distinct colors.  GIF works great on these, JPEG does
       not.  If you want to convert a GIF to JPEG, you should experiment  with
       cjpeg’s  -quality and -smooth options to get a satisfactory conversion.
       -smooth 10 or so is often helpful.

       Avoid    running    an    image    through    a    series    of    JPEG
       compression/decompression  cycles.  Image quality loss will accumulate;
       after ten or so cycles the image may be noticeably worse  than  it  was
       after one cycle.  It’s best to use a lossless format while manipulating
       an image, then convert to JPEG format when you are ready  to  file  the
       image away.

       The  -optimize  option  to  cjpeg  is worth using when you are making a
       "final" version for posting or archiving.  It’s also a win when you are
       using  low  quality  settings  to  make  very  small  JPEG  files;  the
       percentage improvement is often a lot more than it is on larger  files.
       (At   present,  -optimize  mode  is  always  selected  when  generating
       progressive JPEG files.)


              If this environment variable is set, its value  is  the  default
              memory  limit.   The  value  is  specified  as described for the
              -maxmemory  switch.   JPEGMEM  overrides   the   default   value
              specified   when   the  program  was  compiled,  and  itself  is
              overridden by an explicit -maxmemory.


       djpeg(1), jpegtran(1), rdjpgcom(1), wrjpgcom(1)
       ppm(5), pgm(5)
       Wallace, Gregory K.  "The JPEG  Still  Picture  Compression  Standard",
       Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44.


       Independent JPEG Group


       Arithmetic coding is not supported for legal reasons.

       GIF  input  files  are  no  longer  supported,  to avoid the Unisys LZW
       patent.  Use a Unisys-licensed program if you need to read a GIF  file.
       (Conversion of GIF files to JPEG is usually a bad idea anyway.)

       Not all variants of BMP and Targa file formats are supported.

       The  -targa switch is not a bug, it’s a feature.  (It would be a bug if
       the Targa format designers had not been clueless.)

       Still not as fast as we’d like.

                                 20 March 1998                        CJPEG(1)