Provided by: python3-drgn_0.0.23-1_amd64 bug

NAME

       drgn - drgn 0.0.23

       drgn  (pronounced  "dragon")  is  a  debugger  with  an emphasis on programmability.  drgn
       exposes the types and variables in a program for easy, expressive scripting in Python. For
       example, you can debug the Linux kernel:

          >>> from drgn.helpers.linux import list_for_each_entry
          >>> for mod in list_for_each_entry('struct module',
          ...                                prog['modules'].address_of_(),
          ...                                'list'):
          ...    if mod.refcnt.counter > 10:
          ...        print(mod.name)
          ...
          (char [56])"snd"
          (char [56])"evdev"
          (char [56])"i915"

       Although  other  debuggers like GDB have scripting support, drgn aims to make scripting as
       natural as possible so that debugging feels like coding. This  makes  it  well-suited  for
       introspecting the complex, inter-connected state in large programs.

       Additionally,  drgn  is  designed  as  a  library  that can be used to build debugging and
       introspection tools; see the official tools.

       drgn was developed at Meta for debugging the Linux kernel (as an alternative to the  crash
       utility),  but  it  can  also  debug  userspace  programs  written in C. C++ support is in
       progress.

       In addition to the main Python API, an experimental C library, libdrgn, is also available.

       See the Installation instructions. Then, start with the User Guide.

LICENSE

       Copyright (c) Meta Platforms, Inc. and affiliates.

       drgn is licensed under the LGPLv2.1 or later.

ACKNOWLEDGEMENTS

       drgn is named after this because dragons eat dwarves.

TABLE OF CONTENTS

   Installation
       There are several options for installing drgn.

   Dependencies
       drgn depends on:

       • Python 3.6 or newer

       • elfutils 0.165 or newer

       It optionally depends on:

       • libkdumpfile for makedumpfile compressed kernel core dump format support

       The build requires:

       • GCCGNU Makepkgconfsetuptools

       Building from the Git repository (rather than a release tarball) additionally requires:

       • autoconfautomakelibtool

   Installation
   Package Manager
       drgn can be installed using the package manager on some Linux distributions.

       • Fedora >= 32

            $ sudo dnf install drgn

       • RHEL/CentOS >= 8

         Enable EPEL. Then:

            $ sudo dnf install drgn

       • Arch Linux

         Install the drgn package from the AUR.

       • Debian >= 12 (Bookworm)

            $ sudo apt install python3-drgn

       • openSUSE

            $ sudo zypper install python3-drgn

       • Ubuntu

         Enable the michel-slm/kernel-utils PPA.  Then:

            $ sudo apt install python3-drgn

   pip
       If your Linux distribution doesn't package the latest release of drgn, you can install  it
       with pip.

       First, install pip.  Then, run:

          $ sudo pip3 install drgn

       This  will  install  a  binary wheel by default. If you get a build error, then pip wasn't
       able to use the binary wheel. Install the dependencies listed below and try again.

       Note that RHEL/CentOS 6, Debian Stretch, Ubuntu Trusty, and Ubuntu Xenial (and older) ship
       Python versions which are too old. Python 3.6 or newer must be installed.

   From Source
       To  get  the  development  version of drgn, you will need to build it from source.  First,
       install dependencies:

       • Fedora

            $ sudo dnf install autoconf automake elfutils-devel gcc git libkdumpfile-devel libtool make pkgconf python3 python3-devel python3-pip python3-setuptools

       • RHEL/CentOS

            $ sudo dnf install autoconf automake elfutils-devel gcc git libtool make pkgconf python3 python3-devel python3-pip python3-setuptools

         Optionally, install  libkdumpfile-devel  from  EPEL  on  RHEL/CentOS  >=  8  or  install
         libkdumpfile from source if you want support for the makedumpfile format.

         Replace dnf with yum for RHEL/CentOS < 8.

       • Debian/Ubuntu

            $ sudo apt-get install autoconf automake gcc git liblzma-dev libelf-dev libdw-dev libtool make pkgconf python3 python3-dev python3-pip python3-setuptools zlib1g-dev

         Optionally,  install  libkdumpfile  from source if you want support for the makedumpfile
         format.

       • Arch Linux

            $ sudo pacman -S --needed autoconf automake gcc git libelf libtool make pkgconf python python-pip python-setuptools

         Optionally, install libkdumpfile from the AUR or from source if you want support for the
         makedumpfile format.

       • openSUSE

            $ sudo zypper install autoconf automake gcc git libdw-devel libelf-devel libkdumpfile-devel libtool make pkgconf python3 python3-devel python3-pip python3-setuptools

       Then, run:

          $ git clone https://github.com/osandov/drgn.git
          $ cd drgn
          $ python3 setup.py build
          $ sudo python3 setup.py install

   Virtual Environment
       The  above  options  all  install  drgn  globally.  You can also install drgn in a virtual
       environment, either with pip:

          $ python3 -m venv drgnenv
          $ source drgnenv/bin/activate
          (drgnenv) $ pip3 install drgn
          (drgnenv) $ drgn --help

       Or from source:

          $ python3 -m venv drgnenv
          $ source drgnenv/bin/activate
          (drgnenv) $ python3 setup.py install
          (drgnenv) $ drgn --help

   Running Locally
       If you build drgn from source, you can also run it without installing it:

          $ python3 setup.py build_ext -i
          $ python3 -m drgn --help

   User Guide
   Quick Start
       drgn debugs the running kernel by default; run sudo drgn. To debug a running program,  run
       sudo drgn -p $PID. To debug a core dump (either a kernel vmcore or a userspace core dump),
       run drgn -c $PATH. Make sure to install debugging symbols for whatever you are debugging.

       Then, you can access variables in the  program  with  prog['name']  and  access  structure
       members with .:

          $ sudo drgn
          >>> prog['init_task'].comm
          (char [16])"swapper/0"

       You can use various predefined helpers:

          >>> len(list(bpf_prog_for_each(prog)))
          11
          >>> task = find_task(prog, 115)
          >>> cmdline(task)
          [b'findmnt', b'-p']

       You  can get stack traces with prog.stack_trace() and access parameters or local variables
       with stack_trace['name']:

          >>> trace = prog.stack_trace(task)
          >>> trace[5]
          #5 at 0xffffffff8a5a32d0 (do_sys_poll+0x400/0x578) in do_poll at ./fs/select.c:961:8 (inlined)
          >>> poll_list = trace[5]['list']
          >>> file = fget(task, poll_list.entries[0].fd)
          >>> d_path(file.f_path.address_of_())
          b'/proc/115/mountinfo'

   Core Concepts
       The most important interfaces in drgn are programs, objects, and helpers.

   Programs
       A program being debugged is represented by an instance of the drgn.Program class. The drgn
       CLI  is  initialized  with  a  Program  named  prog; unless you are using the drgn library
       directly, this is usually the only Program you will need.

       A Program is used to look up  type  definitions,  access  variables,  and  read  arbitrary
       memory:

          >>> prog.type('unsigned long')
          prog.int_type(name='unsigned long', size=8, is_signed=False)
          >>> prog['jiffies']
          Object(prog, 'volatile unsigned long', address=0xffffffffbe405000)
          >>> prog.read(0xffffffffbe411e10, 16)
          b'swapper/0\x00\x00\x00\x00\x00\x00\x00'

       The    drgn.Program.type(),    drgn.Program.variable(),    drgn.Program.constant(),    and
       drgn.Program.function()  methods  look   up   those   various   things   in   a   program.
       drgn.Program.read()  reads  memory from the program's address space. The [] operator looks
       up a variable, constant, or function:

          >>> prog['jiffies'] == prog.variable('jiffies')
          True

       It is usually more  convenient  to  use  the  []  operator  rather  than  the  variable(),
       constant(),  or  function()  methods unless the program has multiple objects with the same
       name, in which case the methods provide more control.

   Objects
       Variables, constants, functions, and computed values  are  all  called  objects  in  drgn.
       Objects are represented by the drgn.Object class. An object may exist in the memory of the
       program (a reference):

          >>> Object(prog, 'int', address=0xffffffffc09031a0)

       Or, an object may be a constant or temporary computed value (a value):

          >>> Object(prog, 'int', value=4)

       What makes drgn scripts expressive is that objects can be used almost  exactly  like  they
       would  be in the program's own source code. For example, structure members can be accessed
       with the dot (.) operator, arrays can be subscripted with [], arithmetic can be performed,
       and objects can be compared:

          >>> print(prog['init_task'].comm[0])
          (char)115
          >>> print(repr(prog['init_task'].nsproxy.mnt_ns.mounts + 1))
          Object(prog, 'unsigned int', value=34)
          >>> prog['init_task'].nsproxy.mnt_ns.pending_mounts > 0
          False

       A  common  use  case  is converting a drgn.Object to a Python value so it can be used by a
       standard Python library. There are a few ways to do this:

       • The drgn.Object.value_()  method  gets  the  value  of  the  object  with  the  directly
         corresponding  Python type (i.e., integers and pointers become int, floating-point types
         become float, booleans become bool, arrays become list,  structures  and  unions  become
         dict).

       • The drgn.Object.string_() method gets a null-terminated string as bytes from an array or
         pointer.

       • The int(), float(), and bool() functions do an explicit conversion to that Python type.

       Objects  have  several  attributes;  the  most   important   are   drgn.Object.prog_   and
       drgn.Object.type_.  The former is the drgn.Program that the object is from, and the latter
       is the drgn.Type of the object.

       Note that all attributes and methods of the Object class end with  an  underscore  (_)  in
       order  to  avoid  conflicting  with  structure or union members. The Object attributes and
       methods always take precedence; use drgn.Object.member_() if there is a conflict.

   References vs. Values
       The main difference between reference objects and value objects is how they are evaluated.
       References are read from the program's memory every time they are evaluated; values simply
       return the stored value (drgn.Object.read_() reads a reference object and returns it as  a
       value object):

          >>> import time
          >>> jiffies = prog['jiffies']
          >>> jiffies.value_()
          4391639989
          >>> time.sleep(1)
          >>> jiffies.value_()
          4391640290
          >>> jiffies2 = jiffies.read_()
          >>> jiffies2.value_()
          4391640291
          >>> time.sleep(1)
          >>> jiffies2.value_()
          4391640291
          >>> jiffies.value_()
          4391640593

       References  have  a  drgn.Object.address_  attribute,  which  is the object's address as a
       Python int. This is slightly different from the  drgn.Object.address_of_()  method,  which
       returns  the  address  as  a drgn.Object. Of course, both references and values can have a
       pointer  type;  address_  refers  to  the  address  of  the  pointer  object  itself,  and
       drgn.Object.value_() refers to the value of the pointer (i.e., the address it points to):

          >>> address = prog['jiffies'].address_
          >>> type(address)
          <class 'int'>
          >>> print(hex(address))
          0xffffffffbe405000
          >>> jiffiesp = prog['jiffies'].address_of_()
          >>> jiffiesp
          Object(prog, 'volatile unsigned long *', value=0xffffffffbe405000)
          >>> print(hex(jiffiesp.value_()))
          0xffffffffbe405000

   Absent Objects
       In addition to reference objects and value objects, objects may also be absent.

       >>> Object(prog, "int").value_()
       Traceback (most recent call last):
         File "<console>", line 1, in <module>
       _drgn.ObjectAbsentError: object absent

       This  represents  an  object  whose  value  or address is not known. For example, this can
       happen if the object was optimized out of the program by the compiler.

       Any attempt to operate on an absent object results in a drgn.ObjectAbsentError  exception,
       although basic information including its type may still be accessed.

   Helpers
       Some  programs  have  common  data  structures  that you may want to examine. For example,
       consider linked lists in the Linux kernel:

          struct list_head {
              struct list_head *next, *prev;
          };

          #define list_for_each(pos, head) \
              for (pos = (head)->next; pos != (head); pos = pos->next)

       When working with these lists, you'd probably want to define a function:

          def list_for_each(head):
              pos = head.next
              while pos != head:
                  yield pos
                  pos = pos.next

       Then, you could use it like so for any list you need to look at:

          >>> for pos in list_for_each(head):
          ...     do_something_with(pos)

       Of course, it would be a waste of time and effort for everyone to  have  to  define  these
       helpers  for  themselves, so drgn includes a collection of helpers for many use cases. See
       Helpers.

   Validators
       Validators are a special category  of  helpers  that  check  the  consistency  of  a  data
       structure.  In  general,  helpers  assume  that  the data structures that they examine are
       valid. Validators do not make this assumption and do  additional  (potentially  expensive)
       checks to detect broken invariants, corruption, etc.

       Validators  raise  drgn.helpers.ValidationError  if  the  data  structure  is not valid or
       drgn.FaultError if the data structure is invalid in a way that causes a bad memory access.
       They have names prefixed with validate_.

       For  example,  drgn.helpers.linux.list.validate_list()  checks the consistency of a linked
       list in the Linux kernel (in particular, the consistency of the next and prev pointers):

          >>> validate_list(prog["my_list"].address_of_())
          drgn.helpers.ValidationError: (struct list_head *)0xffffffffc029e460 next 0xffffffffc029e000 has prev 0xffffffffc029e450

       drgn.helpers.linux.list.validate_list_for_each_entry() does the  same  checks  while  also
       returning the entries in the list for further validation:

          def validate_my_list(prog):
               for entry in validate_list_for_each_entry(
                   "struct my_entry",
                   prog["my_list"].address_of_(),
                   "list",
               ):
                   if entry.value < 0:
                       raise ValidationError("list contains negative entry")

   Other Concepts
       In addition to the core concepts above, drgn provides a few additional abstractions.

   Threads
       The drgn.Thread class represents a thread.  drgn.Program.threads(), drgn.Program.thread(),
       drgn.Program.main_thread(), and drgn.Program.crashed_thread() can be used to find threads:

          >>> for thread in prog.threads():
          ...     print(thread.tid)
          ...
          39143
          39144
          >>> print(prog.main_thread().tid)
          39143
          >>> print(prog.crashed_thread().tid)
          39144

   Stack Traces
       drgn represents  stack  traces  with  the  drgn.StackTrace  and  drgn.StackFrame  classes.
       drgn.Thread.stack_trace()  and  drgn.Program.stack_trace()  return  the  call  stack for a
       thread. The [] operator looks up an object in the scope of a StackFrame:

          >>> trace = prog.stack_trace(115)
          >>> trace
          #0  context_switch (./kernel/sched/core.c:4683:2)
          #1  __schedule (./kernel/sched/core.c:5940:8)
          #2  schedule (./kernel/sched/core.c:6019:3)
          #3  schedule_hrtimeout_range_clock (./kernel/time/hrtimer.c:2148:3)
          #4  poll_schedule_timeout (./fs/select.c:243:8)
          #5  do_poll (./fs/select.c:961:8)
          #6  do_sys_poll (./fs/select.c:1011:12)
          #7  __do_sys_poll (./fs/select.c:1076:8)
          #8  __se_sys_poll (./fs/select.c:1064:1)
          #9  __x64_sys_poll (./fs/select.c:1064:1)
          #10 do_syscall_x64 (./arch/x86/entry/common.c:50:14)
          #11 do_syscall_64 (./arch/x86/entry/common.c:80:7)
          #12 entry_SYSCALL_64+0x7c/0x15b (./arch/x86/entry/entry_64.S:113)
          #13 0x7f3344072af7
          >>> trace[5]
          #5 at 0xffffffff8a5a32d0 (do_sys_poll+0x400/0x578) in do_poll at ./fs/select.c:961:8 (inlined)
          >>> prog['do_poll']
          (int (struct poll_list *list, struct poll_wqueues *wait, struct timespec64 *end_time))<absent>
          >>> trace[5]['list']
          *(struct poll_list *)0xffffacca402e3b50 = {
                  .next = (struct poll_list *)0x0,
                  .len = (int)1,
                  .entries = (struct pollfd []){},
          }

   Symbols
       The symbol table of a program is a list of identifiers along with their address and  size.
       drgn   represents   symbols   with   the   drgn.Symbol   class,   which   is  returned  by
       drgn.Program.symbol().

   Types
       drgn automatically obtains type definitions from the program. Types are represented by the
       drgn.Type class and created by various factory functions like drgn.Program.int_type():

          >>> prog.type('int')
          prog.int_type(name='int', size=4, is_signed=True)

       You won't usually need to work with types directly, but see Types if you do.

   Platforms
       Certain  operations and objects in a program are platform-dependent; drgn allows accessing
       the platform that a program runs with the drgn.Platform class.

   Command Line Interface
       The drgn CLI is basically a wrapper around the drgn library which automatically creates  a
       drgn.Program. The CLI can be run in interactive mode or script mode.

   Script Mode
       Script  mode is useful for reusable scripts. Simply pass the path to the script along with
       any arguments:

          $ cat script.py
          import sys
          from drgn.helpers.linux import find_task

          pid = int(sys.argv[1])
          uid = find_task(prog, pid).cred.uid.val.value_()
          print(f'PID {pid} is being run by UID {uid}')
          $ sudo drgn script.py 601
          PID 601 is being run by UID 1000

       It's even possible to run drgn scripts directly with the proper shebang:

          $ cat script2.py
          #!/usr/bin/env drgn

          mounts = prog['init_task'].nsproxy.mnt_ns.mounts.value_()
          print(f'You have {mounts} filesystems mounted')
          $ sudo ./script2.py
          You have 36 filesystems mounted

   Interactive Mode
       Interactive mode uses the Python interpreter's  interactive  mode  and  adds  a  few  nice
       features, including:

       • History

       • Tab completion

       • Automatic import of relevant helpers

       • Pretty printing of objects and types

       The  default behavior of the Python REPL is to print the output of repr(). For drgn.Object
       and drgn.Type, this is a raw representation:

          >>> print(repr(prog['jiffies']))
          Object(prog, 'volatile unsigned long', address=0xffffffffbe405000)
          >>> print(repr(prog.type('atomic_t')))
          prog.typedef_type(name='atomic_t', type=prog.struct_type(tag=None, size=4, members=(TypeMember(prog.type('int'), name='counter', bit_offset=0),)))

       The standard print() function uses the output of str(). For drgn objects and  types,  this
       is a representation in programming language syntax:

          >>> print(prog['jiffies'])
          (volatile unsigned long)4395387628
          >>> print(prog.type('atomic_t'))
          typedef struct {
                  int counter;
          } atomic_t

       In  interactive  mode, the drgn CLI automatically uses str() instead of repr() for objects
       and types, so you don't need to call print() explicitly:

          $ sudo drgn
          >>> prog['jiffies']
          (volatile unsigned long)4395387628
          >>> prog.type('atomic_t')
          typedef struct {
                  int counter;
          } atomic_t

   Next Steps
       Refer to the API Reference. Look through the  Helpers.  Read  some  Case  Studies.  Browse
       through the tools. Check out the community contributions.

   Advanced Usage
       The  User Guide covers basic usage of drgn, but drgn also supports more advanced use cases
       which are covered here.

   Loading Debugging Symbols
       drgn will automatically load debugging information based on the  debugged  program  (e.g.,
       from  loaded  kernel  modules or loaded shared libraries).  drgn.Program.load_debug_info()
       can be used to load additional debugging information:

          >>> prog.load_debug_info(['./libfoo.so', '/usr/lib/libbar.so'])

   Library
       In   addition   to   the    CLI,    drgn    is    also    available    as    a    library.
       drgn.program_from_core_dump(),   drgn.program_from_kernel(),  and  drgn.program_from_pid()
       correspond to the -c, -k, and  -p  command  line  options,  respectively;  they  return  a
       drgn.Program that can be used just like the one initialized by the CLI:

          >>> import drgn
          >>> prog = drgn.program_from_kernel()

   C Library
       The  core  functionality  of  drgn  is  implemented  in C and is available as a C library,
       libdrgn. See drgn.h.

       Full documentation can be generated by running doxygen in the  libdrgn  directory  of  the
       source code. Note that the API and ABI are not yet stable.

   Custom Programs
       The  main components of a drgn.Program are the program memory, types, and symbols. The CLI
       and equivalent library interfaces automatically  determine  these.  However,  it  is  also
       possible   to   create   a   "blank"   Program  and  plug  in  the  main  components.  The
       drgn.cli.run_interactive() function allows you to  run  the  same  drgn  CLI  once  you've
       created  a  drgn.Program,  so  it's easy to make a custom program which allows interactive
       debugging.

       drgn.Program.add_memory_segment() defines a range of memory and how to read  that  memory.
       The following example uses a Btrfs filesystem image as the program "memory":

          import drgn
          import os
          import sys
          from drgn.cli import run_interactive

          def btrfs_debugger(dev):
              file = open(dev, 'rb')
              size = file.seek(0, 2)

              def read_file(address, count, offset, physical):
                  file.seek(offset)
                  return file.read(count)

              platform = drgn.Platform(drgn.Architecture.UNKNOWN,
                                       drgn.PlatformFlags.IS_LITTLE_ENDIAN)
              prog = drgn.Program(platform)
              prog.add_memory_segment(0, size, read_file)
              prog.load_debug_info([f'/lib/modules/{os.uname().release}/kernel/fs/btrfs/btrfs.ko'])
              return prog

          prog = btrfs_debugger(sys.argv[1] if len(sys.argv) >= 2 else '/dev/sda')
          print(drgn.Object(prog, 'struct btrfs_super_block', address=65536))
          run_interactive(prog, banner_func=lambda _: "BTRFS debugger")

       drgn.Program.add_type_finder()  and  drgn.Program.add_object_finder()  are  the equivalent
       methods for plugging in types and objects.

   Environment Variables
       Some of drgn's behavior can be modified through environment variables:

       DRGN_MAX_DEBUG_INFO_ERRORS
              The maximum number of individual errors to report in a  drgn.MissingDebugInfoError.
              Any additional errors are truncated. The default is 5; -1 is unlimited.

       DRGN_PREFER_ORC_UNWINDER
              Whether to prefer using ORC over DWARF for stack unwinding (0 or 1). The default is
              0. Note that drgn will always fall back to ORC for  functions  lacking  DWARF  call
              frame  information and vice versa. This environment variable is mainly intended for
              testing and may be ignored in the future.

       DRGN_USE_LIBDWFL_REPORT
              Whether drgn should use libdwfl  to  find  debugging  information  for  core  dumps
              instead  of  its  own  implementation  (0 or 1). The default is 0. This environment
              variable is mainly  intended  as  an  escape  hatch  in  case  of  bugs  in  drgn's
              implementation and will be ignored in the future.

       DRGN_USE_LIBKDUMPFILE_FOR_ELF
              Whether  drgn  should  use libkdumpfile for ELF vmcores (0 or 1). The default is 0.
              This functionality will be removed in the future.

       DRGN_USE_SYS_MODULE
              Whether drgn should use /sys/module to find information about loaded kernel modules
              for  the  running  kernel  instead of getting them from the core dump (0 or 1). The
              default is 1. This environment variable is mainly intended for testing and  may  be
              ignored in the future.

   Linux Kernel Special Objects
       When  debugging  the  Linux  kernel,  there  are some special drgn.Objects accessible with
       drgn.Program.object() and  drgn.Program[].  Some  of  these  are  available  even  without
       debugging  information,  thanks to metadata called "vmcoreinfo" which is present in kernel
       core dumps. These special objects include:

       UTS_RELEASE
              Object type: const char []

              This corresponds to the UTS_RELEASE macro in the Linux kernel source code. This  is
              the exact kernel release (i.e., the output of uname -r).

              To use this as a Python string, you must convert it:

                 >>> release = prog["UTS_RELEASE"].string_().decode("ascii")

              This is available without debugging information.

       PAGE_SIZE
              Object type: unsigned long

       PAGE_SHIFT
              Object type: unsigned int

       PAGE_MASK
              Object type: unsigned long

              These  correspond  to  the macros of the same name in the Linux kernel source code.
              The page size is the smallest contiguous unit  of  physical  memory  which  can  be
              allocated or mapped by the kernel.

              >>> prog['PAGE_SIZE']
              (unsigned long)4096
              >>> prog['PAGE_SHIFT']
              (int)12
              >>> prog['PAGE_MASK']
              (unsigned long)18446744073709547520
              >>> 1 << prog['PAGE_SHIFT'] == prog['PAGE_SIZE']
              True
              >>> ~(prog['PAGE_SIZE'] - 1) == prog['PAGE_MASK']
              True

              These are available without debugging information.

       jiffies
              Object type: volatile unsigned long

              This  is  a counter of timer ticks. It is actually an alias of jiffies_64 on 64-bit
              architectures,  or  the  least  significant  32  bits  of  jiffies_64   on   32-bit
              architectures.  Since  this  alias  is  defined  via  the  linker,  drgn handles it
              specially.

              This is not available without debugging information.

       vmemmap
              Object type: struct page *

              This is a pointer to the "virtual memory map", an array of  struct  page  for  each
              physical page of memory. While the purpose and implementation details of this array
              are beyond the scope of this  documentation,  it  is  enough  to  say  that  it  is
              represented  in the kernel source in an architecture-dependent way, frequently as a
              macro or constant. The definition provided by drgn ensures that users can access it
              without resorting to architecture-specific logic.

              This is not available without debugging information.

   API Reference
   Programs
       class drgn.Program
              A  Program  represents  a crashed or running program. It can be used to lookup type
              definitions, access variables, and read arbitrary memory.

              The main functionality of  a  Program  is  looking  up  objects  (i.e.,  variables,
              constants, or functions). This is usually done with the [] operator.

              Program(platform: Optional[Platform] = None)
                     Create  a  Program  with no target program. It is usually more convenient to
                     use one of the Program Constructors.

                     Parameters
                            platform -- The platform of the program, or  None  if  it  should  be
                            determined automatically when a core dump or symbol file is added.

              flags: ProgramFlags
                     Flags which apply to this program.

              platform: Optional[Platform]
                     Platform  that  this  program runs on, or None if it has not been determined
                     yet.

              language: Language
                     Default programming language of the program.

                     This is used for interpreting  the  type  name  given  to  type()  and  when
                     creating an Object without an explicit type.

                     For  the  Linux kernel, this defaults to Language.C. For userspace programs,
                     this defaults to the language of  main  in  the  program,  falling  back  to
                     Language.C. This heuristic may change in the future.

                     This  can  be explicitly set to a different language (e.g., if the heuristic
                     was incorrect).

              __getitem__(name: str) -> Object
                     Implement self[name]. Get the object (variable, constant, or function)  with
                     the given name.

                     This  is  equivalent  to  prog.object(name) except that this raises KeyError
                     instead of LookupError if no objects with the given name are found.

                     If  there  are  multiple  objects  with  the  same  name,  one  is  returned
                     arbitrarily.  In  this  case,  the  variable(),  constant(),  function(), or
                     object() methods can be used instead.

                     >>> prog['jiffies']
                     Object(prog, 'volatile unsigned long', address=0xffffffff94c05000)

                     Parameters
                            name -- Object name.

              __contains__(name: str) -> bool
                     Implement name in self. Return whether an  object  (variable,  constant,  or
                     function) with the given name exists in the program.

                     Parameters
                            name -- Object name.

              variable(name: str, filename: Optional[str] = None) -> Object
                     Get the variable with the given name.

                     >>> prog.variable('jiffies')
                     Object(prog, 'volatile unsigned long', address=0xffffffff94c05000)

                     This is equivalent to prog.object(name, FindObjectFlags.VARIABLE, filename).

                     Parametersname -- The variable name.

                            • filename  -- The source code file that contains the definition. See
                              Filenames.

                     Raises LookupError -- if no variables with the given name are found  in  the
                            given file

              constant(name: str, filename: Optional[str] = None) -> Object
                     Get the constant (e.g., enumeration constant) with the given name.

                     Note  that  support  for  macro  constants  is not yet implemented for DWARF
                     files, and most compilers don't  generate  macro  debugging  information  by
                     default anyways.

                     >>> prog.constant('PIDTYPE_MAX')
                     Object(prog, 'enum pid_type', value=4)

                     This is equivalent to prog.object(name, FindObjectFlags.CONSTANT, filename).

                     Parametersname -- The constant name.

                            • filename  -- The source code file that contains the definition. See
                              Filenames.

                     Raises LookupError -- if no constants with the given name are found  in  the
                            given file

              function(name: str, filename: Optional[str] = None) -> Object
                     Get the function with the given name.

                     >>> prog.function('schedule')
                     Object(prog, 'void (void)', address=0xffffffff94392370)

                     This is equivalent to prog.object(name, FindObjectFlags.FUNCTION, filename).

                     Parametersname -- The function name.

                            • filename  -- The source code file that contains the definition. See
                              Filenames.

                     Raises LookupError -- if no functions with the given name are found  in  the
                            given file

              object(name:   str,   flags:   FindObjectFlags   =  FindObjectFlags.ANY,  filename:
              Optional[str] = None) -> Object
                     Get the object (variable, constant, or function) with the given name.

                     When debugging the Linux kernel, this can look up  certain  special  objects
                     documented  in Linux Kernel Special Objects, sometimes without any debugging
                     information loaded.

                     Parametersname -- The object name.

                            • flags -- Flags indicating what kind of object to look for.

                            • filename -- The source code file that contains the definition.  See
                              Filenames.

                     Raises LookupError  --  if  no  objects with the given name are found in the
                            given file

              symbol(address_or_name: Union[IntegerLike, str]) -> Symbol
                     Get a symbol containing the given address, or a symbol with the given name.

                     Global symbols are  preferred  over  weak  symbols,  and  weak  symbols  are
                     preferred   over   other   symbols.   In   other   words:   if   a  matching
                     SymbolBinding.GLOBAL  or  SymbolBinding.UNIQUE  symbol  is  found,   it   is
                     returned. Otherwise, if a matching SymbolBinding.WEAK symbol is found, it is
                     returned. Otherwise, any  matching  symbol  (e.g.,  SymbolBinding.LOCAL)  is
                     returned.  If there are multiple matching symbols with the same binding, one
                     is returned arbitrarily. To retrieve all matching symbols, use symbols().

                     Parameters
                            address_or_name -- Address or name to search for. This  parameter  is
                            positional-only.

                     Raises LookupError -- if no symbol contains the given address or matches the
                            given name

              symbols(address_or_name: Union[None, IntegerLike, str] = None) -> List[Symbol]
                     Get a list of global and  local  symbols,  optionally  matching  a  name  or
                     address.

                     If  a string argument is given, this returns all symbols matching that name.
                     If an integer-like argument given,  this  returns  a  list  of  all  symbols
                     containing that address. If no argument is given, all symbols in the program
                     are returned. In all cases, the  symbols  are  returned  in  an  unspecified
                     order.

                     Parameters
                            address_or_name  --  Address or name to search for. This parameter is
                            positional-only.

              stack_trace(thread: Union[Object, IntegerLike]) -> StackTrace
                     Get the stack trace for the given thread in the program.

                     thread may be a thread ID (as defined by gettid(2)), in which case this will
                     unwind  the stack for the thread with that ID. The ID may be a Python int or
                     an integer Object

                     thread may also be a struct pt_regs or struct pt_regs  *  object,  in  which
                     case the initial register values will be fetched from that object.

                     Finally, if debugging the Linux kernel, thread may be a struct task_struct *
                     object, in which case  this  will  unwind  the  stack  for  that  task.  See
                     drgn.helpers.linux.pid.find_task().

                     This  is implemented for the Linux kernel (both live and core dumps) as well
                     as userspace core dumps; it  is  not  yet  implemented  for  live  userspace
                     processes.

                     Parameters
                            thread  --  Thread ID, struct pt_regs object, or struct task_struct *
                            object.

              type(name: str, filename: Optional[str] = None) -> Type
                     Get the type with the given name.

                     >>> prog.type('long')
                     prog.int_type(name='long', size=8, is_signed=True)

                     Parametersname -- The type name.

                            • filename -- The source code file that contains the definition.  See
                              Filenames.

                     Raises LookupError -- if no types with the given name are found in the given
                            file

              type(type: Type) -> Type
                     Return the given type.

                     This is mainly useful so that helpers can use  prog.type()  to  get  a  Type
                     regardless of whether they were given a str or a Type. For example:

                        def my_helper(obj: Object, type: Union[str, Type]) -> bool:
                            # type may be str or Type.
                            type = obj.prog_.type(type)
                            # type is now always Type.
                            return sizeof(obj) > sizeof(type)

                     Parameters
                            type -- Type.

                     Returns
                            The exact same type.

              threads() -> Iterator[Thread]
                     Get an iterator over all of the threads in the program.

              thread(tid: IntegerLike) -> Thread
                     Get the thread with the given thread ID.

                     Parameters
                            tid -- Thread ID (as defined by gettid(2)).

                     Raises LookupError -- if no thread has the given thread ID

              main_thread() -> Thread
                     Get the main thread of the program.

                     This is only defined for userspace programs.

                     Raises ValueError -- if the program is the Linux kernel

              crashed_thread() -> Thread
                     Get the thread that caused the program to crash.

                     For  userspace  programs,  this is the thread that received the fatal signal
                     (e.g., SIGSEGV or SIGQUIT).

                     For the kernel, this is the thread that panicked (either directly  or  as  a
                     result of an oops, BUG_ON(), etc.).

                     Raises ValueError -- if the program is live (i.e., not a core dump)

              read(address: IntegerLike, size: IntegerLike, physical: bool = False) -> bytes
                     Read  size  bytes  of memory starting at address in the program. The address
                     may be virtual (the default) or physical if the program supports it.

                     >>> prog.read(0xffffffffbe012b40, 16)
                     b'swapper/0'

                     Parametersaddress -- The starting address.

                            • size -- The number of bytes to read.

                            • physical -- Whether address is a physical memory address. If False,
                              then  it  is  a virtual memory address. Physical memory can usually
                              only be read when the program is an operating system kernel.

                     RaisesFaultError -- if the address  range  is  invalid  or  the  type  of
                              address (physical or virtual) is not supported by the program

                            • ValueError -- if size is negative

              read_u8(address: IntegerLike, physical: bool = False) -> int

              read_u16(address: IntegerLike, physical: bool = False) -> int

              read_u32(address: IntegerLike, physical: bool = False) -> int

              read_u64(address: IntegerLike, physical: bool = False) -> int

              read_word(address: IntegerLike, physical: bool = False) -> int
                     Read  an  unsigned  integer  from the program's memory in the program's byte
                     order.

                     read_u8(), read_u16(), read_u32(), and read_u64() read an 8-, 16-,  32-,  or
                     64-bit   unsigned   integer,   respectively.  read_word()  reads  a  program
                     word-sized unsigned integer.

                     For signed integers, alternate byte order, or other  formats,  you  can  use
                     read() and int.from_bytes() or the struct module.

                     Parametersaddress -- Address of the integer.

                            • physical  --  Whether  address  is  a  physical memory address; see
                              read().

                     Raises FaultError -- if the address is invalid; see read()

              add_memory_segment(address: IntegerLike, size: IntegerLike, read_fn: Callable[[int,
              int, int, bool], bytes], physical: bool = False) -> None
                     Define a region of memory in the program.

                     If  it  overlaps  a  previously  registered  segment,  the new segment takes
                     precedence.

                     Parametersaddress -- Address of the segment.

                            • size -- Size of the segment in bytes.

                            • physical -- Whether to add a physical  memory  segment.  If  False,
                              then this adds a virtual memory segment.

                            • read_fn  -- Callable to call to read memory from the segment. It is
                              passed the address being read from, the number of  bytes  to  read,
                              the  offset in bytes from the beginning of the segment, and whether
                              the address is physical: (address,  count,  offset,  physical).  It
                              should  return  the  requested  number of bytes as bytes or another
                              buffer type.

              add_type_finder(fn: Callable[[TypeKind, str, Optional[str]], Type]) -> None
                     Register a callback for finding types in the program.

                     Callbacks are called in reverse order of the order they were added until the
                     type is found. So, more recently added callbacks take precedence.

                     Parameters
                            fn  --  Callable  taking a TypeKind, name, and filename: (kind, name,
                            filename). The filename should be  matched  with  filename_matches().
                            This should return a Type.

              add_object_finder(fn:   Callable[[Program,  str,  FindObjectFlags,  Optional[str]],
              Object]) -> None
                     Register a callback for finding objects in the program.

                     Callbacks are called in reverse order of the order they were added until the
                     object is found. So, more recently added callbacks take precedence.

                     Parameters
                            fn -- Callable taking a program, name, FindObjectFlags, and filename:
                            (prog, name, flags, filename). The filename should  be  matched  with
                            filename_matches(). This should return an Object.

              set_core_dump(path: Path) -> None
                     Set the program to a core dump.

                     This  loads the memory segments from the core dump and determines the mapped
                     executable and libraries. It  does  not  load  any  debugging  symbols;  see
                     load_default_debug_info().

                     Parameters
                            path -- Core dump file path.

              set_kernel() -> None
                     Set the program to the running operating system kernel.

                     This  loads  the  memory  of  the  running  kernel  and  thus  requires root
                     privileges.   It   does   not    load    any    debugging    symbols;    see
                     load_default_debug_info().

              set_pid(pid: int) -> None
                     Set the program to a running process.

                     This  loads  the  memory of the process and determines the mapped executable
                     and   libraries.   It   does   not   load   any   debugging   symbols;   see
                     load_default_debug_info().

                     Parameters
                            pid -- Process ID.

              load_debug_info(paths:  Optional[Iterable[Path]]  =  None,  default:  bool = False,
              main: bool = False) -> None
                     Load debugging information for a list of executable or library files.

                     Note that this is parallelized, so it is usually  faster  to  load  multiple
                     files at once rather than one by one.

                     Parameterspaths -- Paths of binary files.

                            • default --

                              Also   load   debugging  information  which  can  automatically  be
                              determined from the program.

                              For the Linux kernel, this tries to load  vmlinux  and  any  loaded
                              kernel modules from a few standard locations.

                              For  userspace  programs, this tries to load the executable and any
                              loaded libraries.

                              This implies main=True.

                            • main --

                              Also load debugging information for the main executable.

                              For the Linux kernel, this tries to load vmlinux.

                              This is currently ignored for userspace programs.

                     Raises MissingDebugInfoError -- if debugging information was  not  available
                            for  some  files;  other  files  with debugging information are still
                            loaded

              load_default_debug_info() -> None
                     Load debugging information which can automatically be  determined  from  the
                     program.

                     This is equivalent to load_debug_info(None, True).

              cache: Dict[Any, Any]
                     Dictionary for caching program metadata.

                     This  isn't  used  by  drgn  itself. It is intended to be used by helpers to
                     cache metadata about the program. For example, if a  helper  for  a  program
                     depends on the program version or an optional feature, the helper can detect
                     it and cache it for subsequent invocations:

                        def my_helper(prog):
                            try:
                                have_foo = prog.cache['have_foo']
                            except KeyError:
                                have_foo = detect_foo_feature(prog)
                                prog.cache['have_foo'] = have_foo
                            if have_foo:
                                return prog['foo']
                            else:
                                return prog['bar']

       class drgn.ProgramFlags
              Bases: enum.Flag

              ProgramFlags are flags that can apply to  a  Program  (e.g.,  about  what  kind  of
              program it is).

              IS_LINUX_KERNEL
                     The program is the Linux kernel.

              IS_LIVE
                     The  program  is currently running (e.g., it is the running operating system
                     kernel or a running process).

       class drgn.FindObjectFlags
              Bases: enum.Flag

              FindObjectFlags are flags for Program.object(). These can be combined to search for
              multiple kinds of objects at once.

              CONSTANT

              FUNCTION

              VARIABLE

              ANY

       class drgn.Thread
              A thread in a program.

              tid: Final[int]
                     Thread ID (as defined by gettid(2)).

              object: Final[Object]
                     If the program is the Linux kernel, the struct task_struct * object for this
                     thread. Otherwise, not defined.

              stack_trace() -> StackTrace
                     Get the stack trace for this thread.

                     This     is     equivalent     to     prog.stack_trace(thread.tid).      See
                     Program.stack_trace().

   Filenames
       The   Program.type(),   Program.object(),   Program.variable(),   Program.constant(),  and
       Program.function() methods all take a filename parameter to distinguish  between  multiple
       definitions  with the same name. The filename refers to the source code file that contains
       the definition. It is matched with filename_matches(). If multiple definitions match,  one
       is returned arbitrarily.

       drgn.filename_matches(haystack: Optional[str], needle: Optional[str]) -> bool
              Return  whether  a  filename  containing a definition (haystack) matches a filename
              being searched for (needle).

              The filename is matched  from  right  to  left,  so  'stdio.h',  'include/stdio.h',
              'usr/include/stdio.h',  and  '/usr/include/stdio.h' would all match a definition in
              /usr/include/stdio.h. If needle is None or empty, it  matches  any  definition.  If
              haystack is None or empty, it only matches if needle is also None or empty.

              Parametershaystack -- Path of file containing definition.

                     • needle -- Filename to match.

   Program Constructors
       The  drgn command line interface automatically creates a Program named prog. However, drgn
       may also be used as a library without the CLI, in which case a  Program  must  be  created
       manually.

       drgn.program_from_core_dump(path: Path) -> Program
              Create  a  Program  from  a core dump file. The type of program (e.g., userspace or
              kernel) is determined automatically.

              Parameters
                     path -- Core dump file path.

       drgn.program_from_kernel() -> Program
              Create a Program from the running  operating  system  kernel.  This  requires  root
              privileges.

       drgn.program_from_pid(pid: int) -> Program
              Create  a  Program  from  a  running  program  with  the  given  PID. This requires
              appropriate permissions (on Linux, ptrace(2) attach permissions).

              Parameters
                     pid -- Process ID of the program to debug.

   Platforms
       class drgn.Platform
              A Platform represents the environment (i.e., architecture and ABI) that  a  program
              runs on.

              Platform(arch: Architecture, flags: Optional[PlatformFlags] = None)
                     Create a Platform.

                     Parametersarch -- Platform.archflags   --   Platform.flags;   if   None,  default  flags  for  the
                              architecture are used.

              arch: Final[Architecture]
                     Instruction set architecture of this platform.

              flags: Final[PlatformFlags]
                     Flags which apply to this platform.

              registers: Final[Sequence[Register]]
                     Processor registers on this platform.

       class drgn.Architecture
              Bases: enum.Enum

              An Architecture represents an instruction set architecture.

              X86_64 The x86-64 architecture, a.k.a. AMD64 or Intel 64.

              I386   The 32-bit x86 architecture, a.k.a. i386 or IA-32.

              AARCH64
                     The AArch64 architecture, a.k.a. ARM64.

              ARM    The 32-bit Arm architecture.

              PPC64  The 64-bit PowerPC architecture.

              RISCV64
                     The 64-bit RISC-V architecture.

              RISCV32
                     The 32-bit RISC-V architecture.

              S390X  The s390x architecture, a.k.a. IBM Z or z/Architecture.

              S390   The 32-bit s390 architecture, a.k.a. System/390.

              UNKNOWN
                     An architecture which is  not  known  to  drgn.  Certain  features  are  not
                     available  when  the  architecture  is  unknown, but most of drgn will still
                     work.

       class drgn.PlatformFlags
              Bases: enum.Flag

              PlatformFlags are flags describing a Platform.

              IS_64_BIT
                     Platform is 64-bit.

              IS_LITTLE_ENDIAN
                     Platform is little-endian.

       class drgn.Register
              A Register represents information about a processor register.

              names: Final[Sequence[str]]
                     Names of this register.

       drgn.host_platform: Platform
              The platform of the host which is running drgn.

   Languages
       class drgn.Language
              A Language represents a programming language supported by drgn.

              This class cannot be constructed; there are singletons for the supported languages.

              name: Final[str]
                     Name of the programming language.

              C: ClassVar[Language]
                     The C programming language.

              CPP: ClassVar[Language]
                     The C++ programming language.

   Objects
       class drgn.Object
              An Object represents a symbol or value in a program. An object  may  exist  in  the
              memory  of  the  program  (a reference), it may be a constant or temporary computed
              value (a value), or it may be absent entirely (an absent object).

              All instances of this class have two attributes: prog_, the program that the object
              is  from;  and  type_,  the  type  of  the  object.  Reference objects also have an
              address_ and a bit_offset_.  Objects may also have a bit_field_size_.

              repr() of an object returns a Python representation of the object:

              >>> print(repr(prog['jiffies']))
              Object(prog, 'volatile unsigned long', address=0xffffffffbf005000)

              str() returns a "pretty" representation  of  the  object  in  programming  language
              syntax:

              >>> print(prog['jiffies'])
              (volatile unsigned long)4326237045

              The output format of str() can be modified by using the format_() method instead:

              >>> sysname = prog['init_uts_ns'].name.sysname
              >>> print(sysname)
              (char [65])"Linux"
              >>> print(sysname.format_(type_name=False))
              "Linux"
              >>> print(sysname.format_(string=False))
              (char [65]){ 76, 105, 110, 117, 120 }

              NOTE:
                 The  drgn  CLI  is  set  up so that objects are displayed in the "pretty" format
                 instead of  with  repr()  (the  latter  is  the  default  behavior  of  Python's
                 interactive  mode). Therefore, it's usually not necessary to call print() in the
                 drgn CLI.

              Objects support the following operators:

              • Arithmetic operators: +, -, *, /, %

              • Bitwise operators: <<, >>, &, |, ^, ~

              • Relational operators: ==, !=, <, >, <=, >=

              • Subscripting: [] (Python does not have  a  unary  *  operator,  so  pointers  are
                dereferenced with ptr[0])

              • Member access: . (Python does not have a -> operator, so . is also used to access
                members of pointers to structures)

              • The address-of operator: drgn.Object.address_of_()  (this  is  a  method  because
                Python does not have a & operator)

              • Array length: len()

              These  operators  all have the semantics of the program's programming language. For
              example, adding two objects from a program written in C results in an object with a
              type and value according to the rules of C:

              >>> Object(prog, 'unsigned long', 2**64 - 1) + Object(prog, 'int', 1)
              Object(prog, 'unsigned long', value=0)

              If  only  one  operand to a binary operator is an object, the other operand will be
              converted to an object according to the language's rules for literals:

              >>> Object(prog, 'char', 0) - 1
              Object(prog, 'int', value=-1)

              The standard int(), float(), and bool() functions convert an object to that  Python
              type.   Conversion  to bool uses the programming language's notion of "truthiness".
              Additionally, certain Python functions will automatically coerce an object  to  the
              appropriate Python type (e.g., hex(), round(), and list subscripting).

              Object  attributes  and  methods  are  named  with  a  trailing underscore to avoid
              conflicting with structure, union, or class members.  The  attributes  and  methods
              always take precedence; use member_() if there is a conflict.

              Objects  are  usually obtained directly from a Program, but they can be constructed
              manually, as well (for example, if you got a variable address from a log file).

              Object(prog: Program, type:  Union[str,  Type],  value:  Union[IntegerLike,  float,
              bool, Mapping[str, Any], Sequence[Any]], *, bit_field_size: Optional[IntegerLike] =
              None)
                     Create a value object given its type and value.

                     Parametersprog -- Program to create the object in.

                            • type -- Type of the object.

                            • value -- Value of the object. See value_().

                            • bit_field_size -- Size in bits of the object if it is a bit  field.
                              The default is None, which means the object is not a bit field.

              Object(prog: Program, *, value: Union[int, float, bool])
                     Create a value object from a "literal".

                     This  is used to emulate a literal number in the source code of the program.
                     The type is deduced  from  value  according  to  the  language's  rules  for
                     literals.

                     Parameters
                            value -- Value of the literal.

              Object(prog:  Program, type: Union[str, Type], *, address: IntegerLike, bit_offset:
              IntegerLike = 0, bit_field_size: Optional[IntegerLike] = None)
                     Create a reference object.

                     Parametersaddress -- Address of the object in the program.

                            • bit_offset -- Offset in bits from address to the beginning  of  the
                              object.

              Object(prog:   Program,  type:  Union[str,  Type],  *,  bit_field_size:  Optional[‐
              IntegerLike] = None)
                     Create an absent object.

              prog_: Final[Program]
                     Program that this object is from.

              type_: Final[Type]
                     Type of this object.

              absent_: Final[bool]
                     Whether this object is absent.

                     This is False for all values and references (even if the  reference  has  an
                     invalid address).

              address_: Final[Optional[int]]
                     Address  of  this  object  if  it  is  a reference, None if it is a value or
                     absent.

              bit_offset_: Final[Optional[int]]
                     Offset in bits from this object's address to the beginning of the object  if
                     it is a reference, None otherwise. This can only be non-zero for scalars.

              bit_field_size_: Final[Optional[int]]
                     Size in bits of this object if it is a bit field, None if it is not.

              __getattribute__(name: str) -> Object
                     Implement self.name.

                     If  name  is  an  attribute  of  the  Object  class,  then this returns that
                     attribute. Otherwise, it is equivalent to member_().

                     >>> print(prog['init_task'].pid)
                     (pid_t)0

                     Parameters
                            name -- Attribute name.

              __getitem__(idx: IntegerLike) -> Object
                     Implement self[idx]. Get the array element at the given index.

                     >>> print(prog['init_task'].comm[0])
                     (char)115

                     This is only valid for pointers and arrays.

                     NOTE:
                        Negative indices behave as  they  would  in  the  object's  language  (as
                        opposed to the Python semantics of indexing from the end of the array).

                     Parameters
                            idx -- The array index.

                     Raises TypeError -- if this object is not a pointer or array

              __len__() -> int
                     Implement len(self). Get the number of elements in this object.

                     >>> len(prog['init_task'].comm)
                     16

                     This is only valid for arrays.

                     Raises TypeError -- if this object is not an array with complete type

              value_() -> Any
                     Get the value of this object as a Python object.

                     For  basic  types (integer, floating-point, boolean), this returns an object
                     of the directly corresponding Python type (int, float, bool). For  pointers,
                     this  returns  the address value of the pointer.  For enums, this returns an
                     int. For structures and unions, this returns a dict of members. For  arrays,
                     this returns a list of values.

                     RaisesFaultError -- if reading the object causes a bad memory access

                            • TypeError -- if this object has an unreadable type (e.g., void)

              string_() -> bytes
                     Read a null-terminated string pointed to by this object.

                     This  is  only  valid  for pointers and arrays. The element type is ignored;
                     this operates byte-by-byte.

                     For pointers and flexible arrays, this stops at the first null byte.

                     For complete arrays, this stops at the first null byte or at the end of  the
                     array.

                     RaisesFaultError -- if reading the string causes a bad memory access

                            • TypeError -- if this object is not a pointer or array

              member_(name: str) -> Object
                     Get a member of this object.

                     This is valid for structures, unions, and pointers to either.

                     Normally  the dot operator (.) can be used to accomplish the same thing, but
                     this method can be used if there is a name conflict with an Object member or
                     method.

                     Parameters
                            name -- Name of the member.

                     RaisesTypeError  -- if this object is not a structure, union, class, or a
                              pointer to one of those

                            • LookupError -- if this object does not have a member with the given
                              name

              address_of_() -> Object
                     Get a pointer to this object.

                     This  corresponds  to  the address-of (&) operator in C. It is only possible
                     for reference objects, as  value  objects  don't  have  an  address  in  the
                     program.

                     As opposed to address_, this returns an Object, not an int.

                     Raises ValueError -- if this object is a value

              read_() -> Object
                     Read  this  object  (which may be a reference or a value) and return it as a
                     value object.

                     This is useful if the object can change  in  the  running  program  (but  of
                     course nothing stops the program from modifying the object while it is being
                     read).

                     As opposed to value_(), this returns an Object, not a standard Python type.

                     RaisesFaultError -- if reading this object causes a bad memory access

                            • TypeError -- if this object has an unreadable type (e.g., void)

              to_bytes_() -> bytes
                     Return the binary representation of this object's value.

              classmethod from_bytes_(prog: Program, type: Union[str,  Type],  bytes:  bytes,  *,
              bit_offset:  IntegerLike  =  0,  bit_field_size:  Optional[IntegerLike]  = None) ->
              Object
                     Return a value object from its binary representation.

                     Parametersprog -- Program to create the object in.

                            • type -- Type of the object.

                            • bytes -- Buffer containing value of the object.

                            • bit_offset -- Offset in bits from the beginning  of  bytes  to  the
                              beginning of the object.

                            • bit_field_size  -- Size in bits of the object if it is a bit field.
                              The default is None, which means the object is not a bit field.

              format_(*, columns: Optional[IntegerLike] =  None,  dereference:  Optional[bool]  =
              None,  symbolize:  Optional[bool]  =  None,  string:  Optional[bool]  = None, char:
              Optional[bool]  =  None,  type_name:  Optional[bool]  =  None,   member_type_names:
              Optional[bool]    =    None,    element_type_names:    Optional[bool]    =    None,
              members_same_line: Optional[bool]  =  None,  elements_same_line:  Optional[bool]  =
              None,  member_names: Optional[bool] = None, element_indices: Optional[bool] = None,
              implicit_members: Optional[bool] = None, implicit_elements: Optional[bool] =  None)
              -> str
                     Format this object in programming language syntax.

                     Various  format  options can be passed (as keyword arguments) to control the
                     output. Options that aren't passed or are passed as  None  fall  back  to  a
                     default.  Specifically,  obj.format_()  (i.e.,  with  no  passed options) is
                     equivalent to str(obj).

                     >>> workqueues = prog['workqueues']
                     >>> print(workqueues)
                     (struct list_head){
                             .next = (struct list_head *)0xffff932ecfc0ae10,
                             .prev = (struct list_head *)0xffff932e3818fc10,
                     }
                     >>> print(workqueues.format_(type_name=False,
                     ...                          member_type_names=False,
                     ...                          member_names=False,
                     ...                          members_same_line=True))
                     { 0xffff932ecfc0ae10, 0xffff932e3818fc10 }

                     Parameterscolumns -- Number of columns to limit output to when the expression
                              can be reasonably wrapped. Defaults to no limit.

                            • dereference   --   If   this  object  is  a  pointer,  include  the
                              dereferenced value. This does not apply  to  structure,  union,  or
                              class members, or array elements, as dereferencing those could lead
                              to an infinite loop. Defaults to True.

                            • symbolize -- Include a symbol name and offset for pointer  objects.
                              Defaults to True.

                            • string -- Format the values of objects with string type as strings.
                              For C, this applies to pointers to and arrays of char, signed char,
                              and unsigned char. Defaults to True.

                            • char  --  Format objects with character type as character literals.
                              For C, this applies  to  char,  signed  char,  and  unsigned  char.
                              Defaults to False.

                            • type_name  --  Include  the  type  name of this object. Defaults to
                              True.

                            • member_type_names -- Include the type names  of  structure,  union,
                              and class members. Defaults to True.

                            • element_type_names  --  Include  the  type names of array elements.
                              Defaults to False.

                            • members_same_line -- Place multiple  structure,  union,  and  class
                              members on the same line if they fit within the specified number of
                              columns. Defaults to False.

                            • elements_same_line -- Place multiple array  elements  on  the  same
                              line  if they fit within the specified number of columns.  Defaults
                              to True.

                            • member_names -- Include the names of structure,  union,  and  class
                              members. Defaults to True.

                            • element_indices  -- Include the indices of array elements. Defaults
                              to False.

                            • implicit_members -- Include structure,  union,  and  class  members
                              which  have  an  implicit  value  (i.e.,  for C, zero-initialized).
                              Defaults to True.

                            • implicit_elements -- Include array elements which have an  implicit
                              value (i.e., for C, zero-initialized). Defaults to False.

       drgn.NULL(prog: Program, type: Union[str, Type]) -> Object
              Get an object representing NULL casted to the given type.

              This is equivalent to Object(prog, type, 0).

              Parametersprog -- The program.

                     • type -- The type.

       drgn.cast(type: Union[str, Type], obj: Object) -> Object
              Get the value of the given object casted to another type.

              Objects  with  a  scalar  type  (integer,  boolean,  enumerated, floating-point, or
              pointer) can be casted to a different scalar type. Other objects can only be casted
              to   the   same   type.   This   always   results  in  a  value  object.  See  also
              drgn.reinterpret().

              Parameterstype -- The type to cast to.

                     • obj -- The object to cast.

       drgn.reinterpret(type: Union[str, Type], obj: Object) -> Object
              Get a copy of the given object reinterpreted as another type and/or byte order.

              This reinterprets the raw memory of the object, so an object can  be  reinterpreted
              as   any  other  type.  However,  value  objects  with  a  scalar  type  cannot  be
              reinterpreted, as their memory layout in the program is not known. Reinterpreting a
              reference  results  in  a reference, and reinterpreting a value results in a value.
              See also drgn.cast().

              Parameterstype -- The type to reinterpret as.

                     • obj -- The object to reinterpret.

       drgn.container_of(ptr: Object, type: Union[str, Type], member: str) -> Object
              Get the containing object of a pointer object.

              This corresponds to the container_of() macro in C.

              Parametersptr -- Pointer to member in containing object.

                     • type -- Type of containing object.

                     • member -- Name of member in containing object. May  include  one  or  more
                       member references and zero or more array subscripts.

              Returns
                     Pointer to containing object.

              RaisesTypeError -- if ptr is not a pointer or type is not a structure, union, or
                       class type

                     • ValueError -- if the member is not byte-aligned (e.g., because it is a bit
                       field)

                     • LookupError -- if type does not have a member with the given name

   Symbols
       class drgn.Symbol
              A  Symbol represents an entry in the symbol table of a program, i.e., an identifier
              along with its corresponding address range in the program.

              name: Final[str]
                     Name of this symbol.

              address: Final[int]
                     Start address of this symbol.

              size: Final[int]
                     Size of this symbol in bytes.

              binding: Final[SymbolBinding]
                     Linkage behavior and visibility of this symbol.

              kind: Final[SymbolKind]
                     Kind of entity represented by this symbol.

       class drgn.SymbolBinding
              Bases: enum.Enum

              A SymbolBinding describes the linkage behavior and visibility of a symbol.

              UNKNOWN
                     Unknown.

              LOCAL  Not visible outside of the object file containing its definition.

              GLOBAL Globally visible.

              WEAK   Globally visible but may be overridden by a non-weak global symbol.

              UNIQUE Globally visible even if dynamic shared object is loaded locally. See  GCC's
                     -fno-gnu-unique option.

       class drgn.SymbolKind
              Bases: enum.Enum

              A SymbolKind describes the kind of entity that a symbol represents.

              UNKNOWN
                     Unknown or not defined.

              OBJECT Data object (e.g., variable or array).

              FUNC   Function or other executable code.

              SECTION
                     Object file section.

              FILE   Source file.

              COMMON Data object in common block.

              TLS    Thread-local storage entity.

              IFUNC  Indirect function.

   Stack Traces
       Stack traces are retrieved with Program.stack_trace().

       class drgn.StackTrace
              A StackTrace is a sequence of StackFrame.

              len(trace)  is  the  number of stack frames in the trace. trace[0] is the innermost
              stack frame, trace[1] is its caller, and trace[len(trace) -  1]  is  the  outermost
              frame.  Negative  indexing  also  works:  trace[-1]  is  the  outermost  frame  and
              trace[-len(trace)] is the innermost frame. It is also iterable:

                 for frame in trace:
                     if frame.name == 'io_schedule':
                         print('Thread is doing I/O')

              str() returns a pretty-printed stack trace:

              >>> prog.stack_trace(1)
              #0  context_switch (kernel/sched/core.c:4339:2)
              #1  __schedule (kernel/sched/core.c:5147:8)
              #2  schedule (kernel/sched/core.c:5226:3)
              #3  do_wait (kernel/exit.c:1534:4)
              #4  kernel_wait4 (kernel/exit.c:1678:8)
              #5  __do_sys_wait4 (kernel/exit.c:1706:13)
              #6  do_syscall_64 (arch/x86/entry/common.c:47:14)
              #7  entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:112)
              #8  0x4d49dd

              The format is subject to change. The drgn CLI is set up so that  stack  traces  are
              displayed with str() by default.

              prog: Final[Program]
                     Program that this stack trace is from.

       class drgn.StackFrame
              A StackFrame represents a single frame in a thread's call stack.

              str() returns a pretty-printed stack frame:

              >>> prog.stack_trace(1)[0]
              #0 at 0xffffffffb64ac287 (__schedule+0x227/0x606) in context_switch at kernel/sched/core.c:4339:2 (inlined)

              This  includes more information than when printing the full stack trace. The format
              is subject to change. The drgn CLI is set up so that  stack  frames  are  displayed
              with str() by default.

              The  []  operator  can  look  up  function  parameters, local variables, and global
              variables in the scope of the stack frame:

              >>> prog.stack_trace(1)[0]['prev'].pid
              (pid_t)1
              >>> prog.stack_trace(1)[0]['scheduler_running']
              (int)1

              name: Final[Optional[str]]
                     Name of the function at this frame, or None if it could not be determined.

                     The name cannot be determined if debugging information is not available  for
                     the  function,  e.g.,  because  it  is  implemented  in  assembly. It may be
                     desirable to use the symbol name or program counter as a fallback:

                        name = frame.name
                        if name is None:
                            try:
                                name = frame.symbol().name
                            except LookupError:
                                name = hex(frame.pc)

              is_inline: Final[bool]
                     Whether this frame is for an inlined call.

                     An inline frame shares the  same  stack  frame  in  memory  as  its  caller.
                     Therefore,  it  has  the  same registers (including program counter and thus
                     symbol).

              interrupted: Final[bool]
                     Whether this stack  frame  was  interrupted  (for  example,  by  a  hardware
                     interrupt, signal, trap, etc.).

                     If  this  is  True, then the register values in this frame are the values at
                     the time that the frame was interrupted.

                     This is False if the frame is  for  a  function  call,  in  which  case  the
                     register  values  are  the  values  when  control  returns to this frame. In
                     particular, the program counter is the return address,  which  is  typically
                     the instruction after the call instruction.

              pc: Final[int]
                     Program counter at this stack frame.

              sp: Final[int]
                     Stack pointer at this stack frame.

              __getitem__(name: str) -> Object
                     Implement   self[name].   Get  the  object  (variable,  function  parameter,
                     constant, or function) with the given name in the scope of this frame.

                     If the object exists but has been optimized  out,  this  returns  an  absent
                     object.

                     Parameters
                            name -- Object name.

              __contains__(name: str) -> bool
                     Implement  name in self. Return whether an object with the given name exists
                     in the scope of this frame.

                     Parameters
                            name -- Object name.

              locals() -> List[str]
                     Get a list of the names of all  local  objects  (local  variables,  function
                     parameters,  local  constants,  and  nested  functions) in the scope of this
                     frame.

                     Not all names may have present values, but they can  be  used  with  the  []
                     operator to check.

              source() -> Tuple[str, int, int]
                     Get the source code location of this frame.

                     Returns
                            Location as a (filename, line, column) triple.

                     Raises LookupError -- if the source code location is not available

              symbol() -> Symbol
                     Get the function symbol at this stack frame.

                     This is equivalent to:

                        prog.symbol(frame.pc - (0 if frame.interrupted else 1))

              register(reg: str) -> int
                     Get the value of the given register at this stack frame.

                     Parameters
                            reg -- Register name.

                     RaisesValueError -- if the register name is not recognized

                            • LookupError -- if the register value is not known

              registers() -> Dict[str, int]
                     Get  the  values  of  all  available  registers  at  this  stack  frame as a
                     dictionary with the register names as keys.

   Types
       class drgn.Type
              A Type object describes a type in a program. Each  kind  of  type  (e.g.,  integer,
              structure)  has  different  attributes  (e.g.,  name,  size).  Types  can also have
              qualifiers (e.g., constant, atomic). Accessing an attribute which does not apply to
              a type raises an AttributeError.

              repr() of a Type returns a Python representation of the type:

              >>> print(repr(prog.type('sector_t')))
              prog.typedef_type(name='sector_t', type=prog.int_type(name='unsigned long', size=8, is_signed=False))

              str() returns a representation of the type in programming language syntax:

              >>> print(prog.type('sector_t'))
              typedef unsigned long sector_t

              The  drgn CLI is set up so that types are displayed with str() instead of repr() by
              default.

              This  class  cannot  be  constructed  directly.  Instead,  use  one  of  the   Type
              Constructors.

              prog: Final[Program]
                     Program that this type is from.

              kind: Final[TypeKind]
                     Kind of this type.

              primitive: Final[Optional[PrimitiveType]]
                     If  this  is  a  primitive type (e.g., int or double), the kind of primitive
                     type. Otherwise, None.

              qualifiers: Final[Qualifiers]
                     Bitmask of this type's qualifier.

              language: Final[Language]
                     Programming language of this type.

              name: Final[str]
                     Name of this type. This is present for integer, boolean, floating-point, and
                     typedef types.

              tag: Final[Optional[str]]
                     Tag  of this type, or None if this is an anonymous type. This is present for
                     structure, union, class, and enumerated types.

              size: Final[Optional[int]]
                     Size of this type in bytes, or None if this is an incomplete type.  This  is
                     present  for  integer, boolean, floating-point, structure, union, class, and
                     pointer types.

              length: Final[Optional[int]]
                     Number of elements in this type, or None if  this  is  an  incomplete  type.
                     This is only present for array types.

              is_signed: Final[bool]
                     Whether this type is signed. This is only present for integer types.

              byteorder: Final[str]
                     Byte  order of this type: 'little' if it is little-endian, or 'big' if it is
                     big-endian. This  is  present  for  integer,  boolean,  floating-point,  and
                     pointer types.

              type: Final[Type]
                     Type underlying this type, defined as follows:

                     • For typedef types, the aliased type.

                     • For  enumerated  types, the compatible integer type, which is None if this
                       is an incomplete type.

                     • For pointer types, the referenced type.

                     • For array types, the element type.

                     • For function types, the return type.

                     For other types, this attribute is not present.

              members: Final[Optional[Sequence[TypeMember]]]
                     List of members of this type, or None if this is an incomplete  type.   This
                     is present for structure, union, and class types.

              enumerators: Final[Optional[Sequence[TypeEnumerator]]]
                     List of enumeration constants of this type, or None if this is an incomplete
                     type. This is only present for enumerated types.

              parameters: Final[Sequence[TypeParameter]]
                     List of parameters of this type. This is only present for function types.

              is_variadic: Final[bool]
                     Whether this type takes a variable number of arguments. This is only present
                     for function types.

              template_parameters: Final[Sequence[TypeTemplateParameter]]
                     List  of  template  parameters  of this type. This is present for structure,
                     union, class, and function types.

              type_name() -> str
                     Get a descriptive full name of this type.

              is_complete() -> bool
                     Get whether this type is complete (i.e.,  the  type  definition  is  known).
                     This  is  always False for void types. It may be False for structure, union,
                     class, enumerated, and array types, as  well  as  typedef  types  where  the
                     underlying type is one of those. Otherwise, it is always True.

              qualified(qualifiers: Qualifiers) -> Type
                     Get a copy of this type with different qualifiers.

                     Note that the original qualifiers are replaced, not added to.

                     Parameters
                            qualifiers -- New type qualifiers.

              unqualified() -> Type
                     Get a copy of this type with no qualifiers.

              member(name: str) -> TypeMember
                     Look up a member in this type by name.

                     If  this  type  has  any unnamed members, this also matches members of those
                     unnamed members, recursively. If the member is found in an  unnamed  member,
                     TypeMember.bit_offset and TypeMember.offset are adjusted accordingly.

                     Parameters
                            name -- Name of the member.

                     RaisesTypeError -- if this type is not a structure, union, or class type

                            • LookupError  --  if this type does not have a member with the given
                              name

              has_member(name: str) -> bool
                     Return whether this type has a member with the given name.

                     If this type has any unnamed members, this also  matches  members  of  those
                     unnamed members, recursively.

                     Parameters
                            name -- Name of the member.

                     Raises TypeError -- if this type is not a structure, union, or class type

       class drgn.TypeMember
              A TypeMember represents a member of a structure, union, or class type.

              TypeMember(object_or_type:  Union[Object, Type, Callable[[], Union[Object, Type]]],
              name: Optional[str] = None, bit_offset: int = 0)
                     Create a TypeMember.

                     Parametersobject_or_type --

                              One of:

                              1. TypeMember.object as an Object.

                              2. TypeMember.type as a Type. In this case, object  is  set  to  an
                                 absent object with that type.

                              3. A callable that takes no arguments and returns one of the above.
                                 It is called when object or type  is  first  accessed,  and  the
                                 result is cached.

                            • name -- TypeMember.namebit_offset -- TypeMember.bit_offset

              object: Final[Object]
                     Member as an Object.

                     This  is  the default initializer for the member, or an absent object if the
                     member has no default initializer. (However, the DWARF specification  as  of
                     version  5 does not actually support default member initializers, so this is
                     usually absent.)

              type: Final[Type]
                     Member type.

                     This is a shortcut for TypeMember.object.type.

              name: Final[Optional[str]]
                     Member name, or None if the member is unnamed.

              bit_offset: Final[int]
                     Offset of the member from the beginning of the type in bits.

              offset: Final[int]
                     Offset of the member from the beginning of the type in bytes. If the  offset
                     is not byte-aligned, accessing this attribute raises ValueError.

              bit_field_size: Final[Optional[int]]
                     Size in bits of this member if it is a bit field, None if it is not.

                     This is a shortcut for TypeMember.object.bit_field_size_.

       class drgn.TypeEnumerator
              A TypeEnumerator represents a constant in an enumerated type.

              Its name and value may be accessed as attributes or unpacked:

              >>> prog.type('enum pid_type').enumerators[0].name
              'PIDTYPE_PID'
              >>> name, value = prog.type('enum pid_type').enumerators[0]
              >>> value
              0

              TypeEnumerator(name: str, value: int)
                     Create a TypeEnumerator.

                     Parametersname -- TypeEnumerator.namevalue -- TypeEnumerator.value

              name: Final[str]
                     Enumerator name.

              value: Final[int]
                     Enumerator value.

       class drgn.TypeParameter
              A TypeParameter represents a parameter of a function type.

              TypeParameter(default_argument_or_type:  Union[Object,  Type,  Callable[[], Union[‐
              Object, Type]]], name: Optional[str] = None)
                     Create a TypeParameter.

                     Parametersdefault_argument_or_type --

                              One of:

                              1. TypeParameter.default_argument as an Object.

                              2. TypeParameter.type as a Type. In this case, default_argument  is
                                 set to an absent object with that type.

                              3. A callable that takes no arguments and returns one of the above.
                                 It is called when default_argument or type  is  first  accessed,
                                 and the result is cached.

                            • name -- TypeParameter.name

              default_argument: Final[Object]
                     Default argument for parameter.

                     If  the  parameter  does not have a default argument, then this is an absent
                     object.

                     NOTE:
                        Neither GCC nor Clang emits debugging information for  default  arguments
                        (as  of  GCC 10 and Clang 11), and drgn does not yet parse it, so this is
                        usually absent.

              type: Final[Type]
                     Parameter type.

                     This is the same as TypeParameter.default_argument.type_.

              name: Final[Optional[str]]
                     Parameter name, or None if the parameter is unnamed.

       class drgn.TypeTemplateParameter
              A TypeTemplateParameter represents a template  parameter  of  a  structure,  union,
              class, or function type.

              TypeTemplateParameter(argument:   Union[Type,   Object,   Callable[[],  Union[Type,
              Object]]], name: Optional[str] = None, is_default: bool = False)
                     Create a TypeTemplateParameter.

                     Parametersargument --

                              One of:

                              1. TypeTemplateParameter.argument as a Type if the parameter  is  a
                                 type template parameter.

                              2. TypeTemplateParameter.argument  as  a  non-absent  Object if the
                                 parameter is a non-type template parameter.

                              3. A callable that takes no arguments and returns one of the above.
                                 It  is called when argument is first accessed, and the result is
                                 cached.

                            • name -- TypeTemplateParameter.nameis_default -- TypeTemplateParameter.is_default

              argument: Final[Union[Type, Object]]
                     Template argument.

                     If this is a type template parameter, then this is a  Type.  If  this  is  a
                     non-type template parameter, then this is an Object.

              name: Final[Optional[str]]
                     Template parameter name, or None if the parameter is unnamed.

              is_default: Final[bool]
                     Whether argument is the default for the template parameter.

                     NOTE:
                        There are two ways to interpret this:

                            1. The  argument  was  omitted  entirely  and  thus  defaulted to the
                               default argument.

                            2. The (specified or defaulted) argument is the same as  the  default
                               argument.

                        Compilers are inconsistent about which interpretation they use.

                        GCC  added  this information in version 4.9. Clang added it in version 11
                        (and only when emitting DWARF version 5). If the program was compiled  by
                        an older version, this is always false.

       class drgn.TypeKind
              Bases: enum.Enum

              A TypeKind represents a kind of type.

              VOID   Void type.

              INT    Integer type.

              BOOL   Boolean type.

              FLOAT  Floating-point type.

              COMPLEX
                     Complex type.

              STRUCT Structure type.

              UNION  Union type.

              CLASS  Class type.

              ENUM   Enumerated type.

              TYPEDEF
                     Type definition (a.k.a. alias) type.

              POINTER
                     Pointer type.

              ARRAY  Array type.

              FUNCTION
                     Function type.

       class drgn.PrimitiveType
              Bases: enum.Enum

              A PrimitiveType represents a primitive type known to drgn.

              C_VOID

              C_CHAR

              C_SIGNED_CHAR

              C_UNSIGNED_CHAR

              C_SHORT

              C_UNSIGNED_SHORT

              C_INT

              C_UNSIGNED_INT

              C_LONG

              C_UNSIGNED_LONG

              C_LONG_LONG

              C_UNSIGNED_LONG_LONG

              C_BOOL

              C_FLOAT

              C_DOUBLE

              C_LONG_DOUBLE

              C_SIZE_T

              C_PTRDIFF_T

       class drgn.Qualifiers
              Bases: enum.Flag

              Qualifiers are modifiers on types.

              NONE   No qualifiers.

              CONST  Constant type.

              VOLATILE
                     Volatile type.

              RESTRICT
                     Restrict type.

              ATOMIC Atomic type.

       drgn.offsetof(type: Type, member: str) -> int
              Get the offset (in bytes) of a member in a Type.

              This corresponds to offsetof() in C.

              Parameterstype -- Structure, union, or class type.

                     • member  --  Name  of member. May include one or more member references and
                       zero or more array subscripts.

              RaisesTypeError -- if type is not a structure, union, or class type

                     • ValueError -- if the member is not byte-aligned (e.g., because it is a bit
                       field)

                     • LookupError -- if type does not have a member with the given name

   Type Constructors
       Custom  drgn  types can be created with the following factory functions. These can be used
       just like types obtained from Program.type().

       Program.void_type(*,  qualifiers:  Qualifiers  =  Qualifiers.NONE,  language:   Optional[‐
       Language] = None) -> Type
              Create a new void type. It has kind TypeKind.VOID.

              Parametersqualifiers -- Type.qualifierslang -- Type.language

       Program.int_type(name: str, size: IntegerLike, is_signed: bool, byteorder: Optional[str] =
       None, *, qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) ->
       Type
              Create a new integer type. It has kind TypeKind.INT.

              Parametersname -- Type.namesize -- Type.sizeis_signed -- Type.is_signedbyteorder  --  Type.byteorder,  or  None to use the program's default byte
                       order.

                     • qualifiers -- Type.qualifierslang -- Type.language

       Program.bool_type(name: str,  size:  IntegerLike,  byteorder:  Optional[str]  =  None,  *,
       qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new boolean type. It has kind TypeKind.BOOL.

              Parametersname -- Type.namesize -- Type.sizebyteorder  --  Type.byteorder,  or  None to use the program's default byte
                       order.

                     • qualifiers -- Type.qualifierslang -- Type.language

       Program.float_type(name: str, size:  IntegerLike,  byteorder:  Optional[str]  =  None,  *,
       qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new floating-point type. It has kind TypeKind.FLOAT.

              Parametersname -- Type.namesize -- Type.sizebyteorder  --  Type.byteorder,  or  None to use the program's default byte
                       order.

                     • qualifiers -- Type.qualifierslang -- Type.language

       Program.struct_type(tag: Optional[str], size: IntegerLike, members:  Sequence[TypeMember],
       *,  template_parameters:  Sequence[TypeTemplateParameter]  =  (), qualifiers: Qualifiers =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new structure type. It has kind TypeKind.STRUCT.

              Parameterstag -- Type.tagsize -- Type.sizemembers -- Type.memberstemplate_parameters -- Type.template_parametersqualifiers -- Type.qualifierslang -- Type.language

       Program.struct_type(tag: Optional[str], size: None  =  None,  members:  None  =  None,  *,
       template_parameters:   Sequence[TypeTemplateParameter]  =  (),  qualifiers:  Qualifiers  =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new incomplete structure type.

       Program.union_type(tag: Optional[str], size: IntegerLike,  members:  Sequence[TypeMember],
       *,  template_parameters:  Sequence[TypeTemplateParameter]  =  (), qualifiers: Qualifiers =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new union type. It has kind TypeKind.UNION. Otherwise, this is the same as
              as struct_type().

       Program.union_type(tag:  Optional[str],  size:  None  =  None,  members:  None  = None, *,
       template_parameters:  Sequence[TypeTemplateParameter]  =  (),  qualifiers:  Qualifiers   =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new incomplete union type.

       Program.class_type(tag:  Optional[str],  size: IntegerLike, members: Sequence[TypeMember],
       *, template_parameters: Sequence[TypeTemplateParameter] =  (),  qualifiers:  Qualifiers  =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new class type. It has kind TypeKind.CLASS. Otherwise, this is the same as
              as struct_type().

       Program.class_type(tag: Optional[str], size:  None  =  None,  members:  None  =  None,  *,
       template_parameters:   Sequence[TypeTemplateParameter]  =  (),  qualifiers:  Qualifiers  =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new incomplete class type.

       Program.enum_type(tag: Optional[str], type: Type,  enumerators:  Sequence[TypeEnumerator],
       *, qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new enumerated type. It has kind TypeKind.ENUM.

              Parameterstag -- Type.tagtype -- The compatible integer type (Type.type)

                     • enumerators -- Type.enumeratorsqualifiers -- Type.qualifierslang -- Type.language

       Program.enum_type(tag:  Optional[str],  type:  None  =  None, enumerators: None = None, *,
       qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new incomplete enumerated type.

       Program.typedef_type(name: str, type: Type, *, qualifiers: Qualifiers  =  Qualifiers.NONE,
       language: Optional[Language] = None) -> Type
              Create a new typedef type. It has kind TypeKind.TYPEDEF.

              Parametersname -- Type.nametype -- The aliased type (Type.type)

                     • qualifiers -- Type.qualifierslang -- Type.language

       Program.pointer_type(type:  Type,  size:  Optional[int] = None, byteorder: Optional[str] =
       None, *, qualifiers: Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) ->
       Type
              Create a new pointer type. It has kind TypeKind.POINTER,

              Parameterstype -- The referenced type (Type.type)

                     • size -- Type.size, or None to use the program's default pointer size.

                     • byteorder  --  Type.byteorder,  or  None to use the program's default byte
                       order.

                     • qualifiers -- Type.qualifierslang -- Type.language

       Program.array_type(type: Type, length: Optional[int] = None, *, qualifiers:  Qualifiers  =
       Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new array type. It has kind TypeKind.ARRAY.

              Parameterstype -- The element type (Type.type)

                     • length -- Type.lengthqualifiers -- Type.qualifierslang -- Type.language

       Program.function_type(type: Type, parameters: Sequence[TypeParameter], is_variadic: bool =
       False,  *,  template_parameters:   Sequence[TypeTemplateParameter]   =   (),   qualifiers:
       Qualifiers = Qualifiers.NONE, language: Optional[Language] = None) -> Type
              Create a new function type. It has kind TypeKind.FUNCTION.

              Parameterstype -- The return type (Type.type)

                     • parameters -- Type.parametersis_variadic -- Type.is_variadictemplate_parameters -- Type.template_parametersqualifiers -- Type.qualifierslang -- Type.language

   Miscellaneous
       drgn.sizeof(type_or_obj: Union[Type, Object]) -> int
              Get the size of a Type or Object in bytes.

              Parameters
                     type_or_obj -- Entity to get the size of.

              Raises TypeError  --  if  the  type  does  not  have  a  size  (e.g., because it is
                     incomplete or void)

       drgn.execscript(path: str, *args: str) -> None
              Execute a script.

              The script is executed in the same context as the caller: currently defined globals
              are  available  to  the script, and globals defined by the script are added back to
              the calling context.

              This is most useful for executing scripts from interactive mode. For  example,  you
              could have a script named exe.py:

                 """Get all tasks executing a given file."""

                 import sys

                 from drgn.helpers.linux.fs import d_path
                 from drgn.helpers.linux.pid import find_task

                 def task_exe_path(task):
                     if task.mm:
                         return d_path(task.mm.exe_file.f_path).decode()
                     else:
                         return None

                 tasks = [
                     task for task in for_each_task(prog)
                     if task_exe_path(task) == sys.argv[1]
                 ]

              Then, you could execute it and use the defined variables and functions:

              >>> execscript('exe.py', '/usr/bin/bash')
              >>> tasks[0].pid
              (pid_t)358442
              >>> task_exe_path(find_task(prog, 357954))
              '/usr/bin/vim'

              Parameterspath -- File path of the script.

                     • args -- Zero or more additional arguments to pass to the script. This is a
                       variable argument list.

       class drgn.IntegerLike
              Bases: Protocol

              An int or integer-like object.

              Parameters annotated with this type expect an integer  which  may  be  given  as  a
              Python int or an Object with integer type.

       drgn.Path: TypeAlias
              Filesystem path.

              Parameters  annotated  with  this  type  accept a filesystem path as str, bytes, or
              os.PathLike.

   Exceptions
       class drgn.FaultError
              Bases: Exception

              This error is raised when a bad memory access is attempted (i.e., when accessing  a
              memory address which is not valid in a program).

              FaultError(message: str, address: int)

                     Parametersmessage -- FaultError.messageaddress -- FaultError.address

              message: str
                     Error message.

              address: int
                     Address that couldn't be accessed.

       class drgn.MissingDebugInfoError
              Bases: Exception

              This  error  is  raised  when  one  or  more  files  in a program do not have debug
              information.

       class drgn.ObjectAbsentError
              Bases: Exception

              This error is raised when attempting to use an absent object.

       class drgn.OutOfBoundsError
              Bases: Exception

              This error is raised when attempting to access beyond the bounds of a value object.

   CLI
       Functions for embedding the drgn CLI.

       drgn.cli.version_header() -> str
              Return the version header printed at the beginning of a drgn session.

              The run_interactive() function does not include this banner at the beginning of  an
              interactive  session.  Use this function to retrieve one line of text to add to the
              beginning of the drgn banner, or print it before calling run_interactive().

       drgn.cli.run_interactive(prog: drgn.Program, banner_func: Optional[Callable[[str], str]] =
       None,  globals_func:  Optional[Callable[[Dict[str,  Any]], Dict[str, Any]]] = None, quiet:
       bool = False) -> None
              Run drgn's Interactive Mode until the user exits.

              This function allows your application to embed the same  REPL  that  drgn  provides
              when it is run on the command line in interactive mode.

              Parametersprog -- Pre-configured program to run against. Available as a global named
                       prog in the CLI.

                     • banner_func -- Optional function to modify the printed banner. Called with
                       the default banner, and must return a string to use as the new banner. The
                       default banner does not include the drgn version, which can  be  retrieved
                       via version_header().

                     • globals_func  --  Optional  function  to  modify  globals  provided to the
                       session. Called with a dictionary of default globals, and  must  return  a
                       dictionary to use instead.

                     • quiet -- Whether to suppress non-fatal warnings.

              NOTE:
                 This  function  uses  readline and modifies some settings.  Unfortunately, it is
                 not possible for it to restore  all  settings.  In  particular,  it  clears  the
                 readline history and resets the TAB keybinding to the default.

                 Applications  using  readline  should  save  their  history and clear any custom
                 settings before calling this function. After calling this function, applications
                 should restore their history and settings before using readline.

   Helpers
       The  drgn.helpers  package  contains  subpackages  which  provide helpers for working with
       particular types of programs. Currently, there are common  helpers  and  helpers  for  the
       Linux kernel. In the future, there may be helpers for, e.g., glibc and libstdc++.

       class drgn.helpers.ValidationError
              Bases: Exception

              Error raised by a validator when an inconsistent or invalid state is detected.

   Common
       The  drgn.helpers.common  package  provides helpers that can be used with any program. The
       helpers are available from the individual modules in which they are defined and from  this
       top-level package. E.g., the following are both valid:

       >>> from drgn.helpers.common.memory import identify_address
       >>> from drgn.helpers.common import identify_address

       Some  of  these  helpers  may  have additional program-specific behavior but are otherwise
       generic.

   Formatting
       The drgn.helpers.common.format module provides generic helpers  for  formatting  different
       things as text.

       drgn.helpers.common.format.escape_ascii_character(c:   int,  escape_single_quote:  bool  =
       False, escape_double_quote: bool = False, escape_backslash: bool = False) -> str
              Format an ASCII byte value as a character,  possibly  escaping  it.   Non-printable
              characters  are always escaped. Non-printable characters other than \0, \a, \b, \t,
              \n, \v, \f, and \r are escaped in hexadecimal  format  (e.g.,  \x7f).  By  default,
              printable characters are never escaped.

              Parametersc -- Character to escape.

                     • escape_single_quote -- Whether to escape single quotes to \'.

                     • escape_double_quote -- Whether to escape double quotes to \".

                     • escape_backslash -- Whether to escape backslashes to \\.

       drgn.helpers.common.format.escape_ascii_string(buffer: Iterable[int], escape_single_quote:
       bool = False, escape_double_quote: bool = False, escape_backslash: bool = False) -> str
              Escape  an  iterable  of  ASCII  byte  values  (e.g.,  bytes  or  bytearray).   See
              escape_ascii_character().

              Parameters
                     buffer -- Byte array to escape.

       drgn.helpers.common.format.decode_flags(value:           drgn.IntegerLike,          flags:
       Iterable[Tuple[str, int]], bit_numbers: bool = True) -> str
              Get a human-readable representation of a bitmask of flags.

              By default, flags are specified by their bit number:

              >>> decode_flags(2, [("BOLD", 0), ("ITALIC", 1), ("UNDERLINE", 2)])
              'ITALIC'

              They can also be specified by their value:

              >>> decode_flags(2, [("BOLD", 1), ("ITALIC", 2), ("UNDERLINE", 4)],
              ...              bit_numbers=False)
              'ITALIC'

              Multiple flags are combined with "|":

              >>> decode_flags(5, [("BOLD", 0), ("ITALIC", 1), ("UNDERLINE", 2)])
              'BOLD|UNDERLINE'

              If there are multiple names for the same bit, they are all included:

              >>> decode_flags(2, [("SMALL", 0), ("BIG", 1), ("LARGE", 1)])
              'BIG|LARGE'

              If there are any unknown bits, their raw value is included:

              >>> decode_flags(27, [("BOLD", 0), ("ITALIC", 1), ("UNDERLINE", 2)])
              'BOLD|ITALIC|0x18'

              Zero is returned verbatim:

              >>> decode_flags(0, [("BOLD", 0), ("ITALIC", 1), ("UNDERLINE", 2)])
              '0'

              Parametersvalue -- Bitmask to decode.

                     • flags -- List of flag names and their bit numbers or values.

                     • bit_numbers -- Whether flags specifies the bit numbers  (where  0  is  the
                       least significant bit) or values of the flags.

       drgn.helpers.common.format.decode_enum_type_flags(value:      drgn.IntegerLike,      type:
       drgn.Type, bit_numbers: bool = True) -> str
              Get a human-readable representation of a bitmask  of  flags  where  the  flags  are
              specified by an enumerated drgn.Type.

              This supports enums where the values are bit numbers:

              >>> print(bits_enum)
              enum style_bits {
                      BOLD = 0,
                      ITALIC = 1,
                      UNDERLINE = 2,
              }
              >>> decode_enum_type_flags(5, bits_enum)
              'BOLD|UNDERLINE'

              Or the values of the flags:

              >>> print(flags_enum)
              enum style_flags {
                      BOLD = 1,
                      ITALIC = 2,
                      UNDERLINE = 4,
              }
              >>> decode_enum_type_flags(5, flags_enum, bit_numbers=False)
              'BOLD|UNDERLINE'

              See decode_flags().

              Parametersvalue -- Bitmask to decode.

                     • type -- Enumerated type with bit numbers for enumerators.

                     • bit_numbers  --  Whether  the enumerator values specify the bit numbers or
                       values of the flags.

       drgn.helpers.common.format.number_in_binary_units(n: SupportsFloat, precision: int = 1) ->
       str
              Format a number in binary units (i.e., "K" is 1024, "M" is 10242, etc.).

              >>> number_in_binary_units(1280)
              '1.2K'

              A precision can be specified:

              >>> number_in_binary_units(1280, precision=2)
              '1.25K'

              Exact numbers are printed without a fractional part:

              >>> number_in_binary_units(1024 * 1024)
              '1M'

              Numbers less than 1024 are not scaled:

              >>> number_in_binary_units(10)
              '10'

              Parametersn -- Number to format.

                     • precision -- Number of digits to include in fractional part.

   Memory
       The  drgn.helpers.common.memory  module  provides  helpers  for  working  with  memory and
       addresses.

       drgn.helpers.common.memory.identify_address(addr: drgn.Object) -> Optional[str]

       drgn.helpers.common.memory.identify_address(prog: drgn.Program, addr: drgn.IntegerLike) ->
       Optional[str]
              Try to identify what an address refers to.

              For all programs, this will identify addresses as follows:

              • Object   symbols   (e.g.,   addresses   in   global  variables):  object  symbol:
                {symbol_name}+{hex_offset} (where hex_offset is the offset from the beginning  of
                the symbol in hexadecimal).

              • Function    symbols    (i.e.,   addresses   in   functions):   function   symbol:
                {symbol_name}+{hex_offset}.

              • Other symbols: symbol: {symbol_name}+{hex_offset}.

              Additionally, for the Linux kernel, this will identify:

              • Allocated  slab  objects:  slab  object:  {slab_cache_name}+{hex_offset}   (where
                hex_offset is the offset from the beginning of the object in hexadecimal).

              • Free slab objects: free slab object: {slab_cache_name}+{hex_offset}.

              This may recognize other types of addresses in the future.

              The address can be given as an Object or as a Program and an integer.

              Parameters
                     addr -- void *

              Returns
                     Identity as string, or None if the address is unrecognized.

   Stack
       The drgn.helpers.common.stack module provides helpers for working with stack traces.

       drgn.helpers.common.stack.print_annotated_stack(trace: drgn.StackTrace) -> None
              Print  the contents of stack memory in a stack trace, annotating values that can be
              identified.

              Currently, this will identify any addresses on the stack with identify_address().

              >>> print_annotated_stack(prog.stack_trace(1))
              STACK POINTER     VALUE
              [stack frame #0 at 0xffffffff8dc93c41 (__schedule+0x429/0x488) in context_switch at ./kernel/sched/core.c:5209:2 (inlined)]
              [stack frame #1 at 0xffffffff8dc93c41 (__schedule+0x429/0x488) in __schedule at ./kernel/sched/core.c:6521:8]
              ffffa903c0013d28: ffffffff8d8497bf [function symbol: __flush_tlb_one_user+0x5]
              ffffa903c0013d30: 000000008d849eb5
              ffffa903c0013d38: 0000000000000001
              ffffa903c0013d40: 0000000000000004
              ffffa903c0013d48: efdea37bb7cb1f00
              ffffa903c0013d50: ffff926641178000 [slab object: task_struct+0x0]
              ffffa903c0013d58: ffff926641178000 [slab object: task_struct+0x0]
              ffffa903c0013d60: ffffa903c0013e10
              ffffa903c0013d68: ffff926641177ff0 [slab object: mm_struct+0x70]
              ffffa903c0013d70: ffff926641178000 [slab object: task_struct+0x0]
              ffffa903c0013d78: ffff926641178000 [slab object: task_struct+0x0]
              ffffa903c0013d80: ffffffff8dc93d29 [function symbol: schedule+0x89]
              ...

              Parameters
                     trace -- Stack trace to print.

   Types
       The drgn.helpers.common.type module provides generic helpers for  working  with  types  in
       ways that aren't provided by the core drgn library.

       drgn.helpers.common.type.enum_type_to_class(type:    drgn.Type,    name:   str,   exclude:
       Container[str] = (), prefix: str = '') -> Type[enum.IntEnum]
              Get an enum.IntEnum class from an enumerated drgn.Type.

              Parameterstype -- Enumerated type to convert.

                     • name -- Name of the IntEnum type to create.

                     • exclude -- Container (e.g., list or set) of enumerator  names  to  exclude
                       from the created IntEnum.

                     • prefix -- Prefix to strip from the beginning of enumerator names.

   Linux Kernel
       The  drgn.helpers.linux  package contains several modules for working with data structures
       and subsystems in the Linux kernel. The helpers are available from the individual  modules
       in  which  they  are defined and from this top-level package. E.g., the following are both
       valid:

       >>> from drgn.helpers.linux.list import list_for_each_entry
       >>> from drgn.helpers.linux import list_for_each_entry

       Iterator macros (for_each_foo) are a common idiom in the Linux kernel. The equivalent drgn
       helpers are implemented as Python generators. For example, the following code in C:

          list_for_each(pos, head)
                  do_something_with(pos);

       Translates to the following code in Python:

          for pos in list_for_each(head):
              do_something_with(pos)

   Bit Operations
       The  drgn.helpers.linux.bitops  module  provides  helpers for common bit operations in the
       Linux kernel.

       drgn.helpers.linux.bitops.for_each_set_bit(bitmap: drgn.Object, size: drgn.IntegerLike) ->
       Iterator[int]
              Iterate over all set (one) bits in a bitmap.

              Parametersbitmap -- unsigned long *size -- Size of bitmap in bits.

       drgn.helpers.linux.bitops.for_each_clear_bit(bitmap:  drgn.Object, size: drgn.IntegerLike)
       -> Iterator[int]
              Iterate over all clear (zero) bits in a bitmap.

              Parametersbitmap -- unsigned long *size -- Size of bitmap in bits.

       drgn.helpers.linux.bitops.test_bit(nr: drgn.IntegerLike, bitmap: drgn.Object) -> bool
              Return whether a bit in a bitmap is set.

              Parametersnr -- Bit number.

                     • bitmap -- unsigned long *

   Block Layer
       The drgn.helpers.linux.block module provides helpers for  working  with  the  Linux  block
       layer, including disks (struct gendisk) and partitions.

       Since  Linux  v5.11, partitions are represented by struct block_device.  Before that, they
       were represented by struct hd_struct.

       drgn.helpers.linux.block.disk_devt(disk: drgn.Object) -> drgn.Object
              Get a disk's device number.

              Parameters
                     disk -- struct gendisk *

              Returns
                     dev_t

       drgn.helpers.linux.block.disk_name(disk: drgn.Object) -> bytes
              Get the name of a disk (e.g., sda).

              Parameters
                     disk -- struct gendisk *

       drgn.helpers.linux.block.for_each_disk(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all disks in the system.

              Returns
                     Iterator of struct gendisk * objects.

       drgn.helpers.linux.block.print_disks(prog: drgn.Program) -> None
              Print all of the disks in the system.

       drgn.helpers.linux.block.part_devt(part: drgn.Object) -> drgn.Object
              Get a partition's device number.

              Parameters
                     part -- struct block_device * or struct hd_struct * depending on the  kernel
                     version.

              Returns
                     dev_t

       drgn.helpers.linux.block.part_name(part: drgn.Object) -> bytes
              Get the name of a partition (e.g., sda1).

              Parameters
                     part  -- struct block_device * or struct hd_struct * depending on the kernel
                     version.

       drgn.helpers.linux.block.for_each_partition(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all partitions in the system.

              Returns
                     Iterator of struct block_device * or struct hd_struct * objects depending on
                     the kernel version.

       drgn.helpers.linux.block.print_partitions(prog: drgn.Program) -> None
              Print all of the partitions in the system.

   Boot
       The  drgn.helpers.linux.boot  module provides helpers for inspecting the Linux kernel boot
       configuration.

       drgn.helpers.linux.boot.kaslr_offset(prog: drgn.Program) -> int
              Get the kernel address space layout randomization offset (zero if it is disabled).

       drgn.helpers.linux.boot.pgtable_l5_enabled(prog: drgn.Program) -> bool
              Return whether 5-level paging is enabled.

   BPF
       The drgn.helpers.linux.bpf module provides helpers  for  working  with  BPF  interface  in
       include/linux/bpf.h, include/linux/bpf-cgroup.h, etc.

       drgn.helpers.linux.bpf.bpf_btf_for_each(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all BTF objects.

              This is only supported since Linux v4.18.

              Returns
                     Iterator of struct btf * objects.

       drgn.helpers.linux.bpf.bpf_link_for_each(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all BPF links.

              This is only supported since Linux v5.8.

              Returns
                     Iterator of struct bpf_link * objects.

       drgn.helpers.linux.bpf.bpf_map_for_each(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all BPF maps.

              This is only supported since Linux v4.13.

              Returns
                     Iterator of struct bpf_map * objects.

       drgn.helpers.linux.bpf.bpf_prog_for_each(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all BPF programs.

              This is only supported since Linux v4.13.

              Returns
                     Iterator of struct bpf_prog * objects.

       drgn.helpers.linux.bpf.cgroup_bpf_prog_for_each(cgrp:     drgn.Object,    bpf_attach_type:
       drgn.IntegerLike) -> Iterator[drgn.Object]
              Iterate over all cgroup BPF programs of the given attach type attached to the given
              cgroup.

              Parameterscgrp -- struct cgroup *bpf_attach_type -- enum bpf_attach_type

              Returns
                     Iterator of struct bpf_prog * objects.

       drgn.helpers.linux.bpf.cgroup_bpf_prog_for_each_effective(cgrp:               drgn.Object,
       bpf_attach_type: drgn.IntegerLike) -> Iterator[drgn.Object]
              Iterate over all effective cgroup BPF programs of the given  attach  type  for  the
              given cgroup.

              Parameterscgrp -- struct cgroup *bpf_attach_type -- enum bpf_attach_type

              Returns
                     Iterator of struct bpf_prog * objects.

   Cgroup
       The  drgn.helpers.linux.cgroup  module  provides  helpers  for  working  with  the  cgroup
       interface in include/linux/cgroup.h. Only cgroup v2 is supported.

       drgn.helpers.linux.cgroup.sock_cgroup_ptr(skcd: drgn.Object) -> drgn.Object
              Get the cgroup for a socket from the given struct sock_cgroup_data * (usually  from
              struct sock::sk_cgrp_data).

              Parameters
                     skcd -- struct sock_cgroup_data *

              Returns
                     struct cgroup *

       drgn.helpers.linux.cgroup.cgroup_parent(cgrp: drgn.Object) -> drgn.Object
              Return the parent cgroup of the given cgroup if it exists, NULL otherwise.

              Parameters
                     cgrp -- struct cgroup *

              Returns
                     struct cgroup *

       drgn.helpers.linux.cgroup.cgroup_name(cgrp: drgn.Object) -> bytes
              Get the name of the given cgroup.

              Parameters
                     cgrp -- struct cgroup *

       drgn.helpers.linux.cgroup.cgroup_path(cgrp: drgn.Object) -> bytes
              Get the full path of the given cgroup.

              Parameters
                     cgrp -- struct cgroup *

       drgn.helpers.linux.cgroup.cgroup_get_from_path(prog:  drgn.Program,  path:  drgn.Path)  ->
       drgn.Object
              Look up a cgroup from its default hierarchy path .

              Parameters
                     path -- Path name.

       drgn.helpers.linux.cgroup.css_next_child(pos:   drgn.Object,   parent:   drgn.Object)   ->
       drgn.Object
              Get the next child (or NULL if there is none) of the given parent starting from the
              given position (NULL to initiate traversal).

              Parameterspos -- struct cgroup_subsys_state *parent -- struct cgroup_subsys_state *

              Returns
                     struct cgroup_subsys_state *

       drgn.helpers.linux.cgroup.css_next_descendant_pre(pos: drgn.Object, root: drgn.Object)  ->
       drgn.Object
              Get  the next pre-order descendant (or NULL if there is none) of the given css root
              starting from the given position (NULL to initiate traversal).

              Parameterspos -- struct cgroup_subsys_state *root -- struct cgroup_subsys_state *

              Returns
                     struct cgroup_subsys_state *

       drgn.helpers.linux.cgroup.css_for_each_child(css: drgn.Object) -> Iterator[drgn.Object]
              Iterate through children of the given css.

              Parameters
                     css -- struct cgroup_subsys_state *

              Returns
                     Iterator of struct cgroup_subsys_state * objects.

       drgn.helpers.linux.cgroup.css_for_each_descendant_pre(css:  drgn.Object)   ->   Iterator[‐
       drgn.Object]
              Iterate through the given css's descendants in pre-order.

              Parameters
                     css -- struct cgroup_subsys_state *

              Returns
                     Iterator of struct cgroup_subsys_state * objects.

   CPU Masks
       The  drgn.helpers.linux.cpumask  module  provides  helpers for working with CPU masks from
       include/linux/cpumask.h.

       drgn.helpers.linux.cpumask.for_each_cpu(mask: drgn.Object) -> Iterator[int]
              Iterate over all of the CPUs in the given mask.

              Parameters
                     mask -- struct cpumask

       drgn.helpers.linux.cpumask.for_each_online_cpu(prog: drgn.Program) -> Iterator[int]
              Iterate over all online CPUs.

       drgn.helpers.linux.cpumask.for_each_possible_cpu(prog: drgn.Program) -> Iterator[int]
              Iterate over all possible CPUs.

       drgn.helpers.linux.cpumask.for_each_present_cpu(prog: drgn.Program) -> Iterator[int]
              Iterate over all present CPUs.

   Devices
       The drgn.helpers.linux.device module provides helpers  for  working  with  Linux  devices,
       including the kernel encoding of dev_t.

       drgn.helpers.linux.device.MAJOR(dev: drgn.IntegerLike) -> int
              Return the major ID of a kernel dev_t.

              Parameters
                     dev -- dev_t object or :class:int.

       drgn.helpers.linux.device.MINOR(dev: drgn.IntegerLike) -> int
              Return the minor ID of a kernel dev_t.

              Parameters
                     dev -- dev_t object or :class:int.

       drgn.helpers.linux.device.MKDEV(major: drgn.IntegerLike, minor: drgn.IntegerLike) -> int
              Return a kernel dev_t from the major and minor IDs.

              Parametersmajor -- Device major ID.

                     • minor -- Device minor ID.

   Virtual Filesystem Layer
       The  drgn.helpers.linux.fs  module  provides  helpers  for  working with the Linux virtual
       filesystem (VFS) layer, including mounts, dentries, and inodes.

       drgn.helpers.linux.fs.path_lookup(prog_or_root:  Union[drgn.Program,  drgn.Object],  path:
       drgn.Path, allow_negative: bool = False) -> drgn.Object
              Look up the given path name.

              Parametersprog_or_root  -- struct path * object to use as root directory, or Program
                       to use the initial root filesystem.

                     • path -- Path to lookup.

                     • allow_negative -- Whether to allow returning a negative  dentry  (i.e.,  a
                       dentry for a non-existent path).

              Returns
                     struct path

              Raises Exception  --  if  the dentry is negative and allow_negative is False, or if
                     the path is not present in the dcache. The latter does not necessarily  mean
                     that the path does not exist; it may be uncached.  On a live system, you can
                     make the kernel cache the  path  by  accessing  it  (e.g.,  with  open()  or
                     os.stat()):

              >>> path_lookup(prog, '/usr/include/stdlib.h')
              ...
              Exception: could not find '/usr/include/stdlib.h' in dcache
              >>> open('/usr/include/stdlib.h').close()
              >>> path_lookup(prog, '/usr/include/stdlib.h')
              (struct path){
                      .mnt = (struct vfsmount *)0xffff8b70413cdca0,
                      .dentry = (struct dentry *)0xffff8b702ac2c480,
              }

       drgn.helpers.linux.fs.d_path(path: drgn.Object) -> bytes
              Return the full path of a dentry given a struct path.

              Parameters
                     path -- struct path or struct path *

       drgn.helpers.linux.fs.d_path(vfsmnt: drgn.Object, dentry: drgn.Object) -> bytes
              Return the full path of a dentry given a mount and dentry.

              Parametersvfsmnt -- struct vfsmount *dentry -- struct dentry *

       drgn.helpers.linux.fs.dentry_path(dentry: drgn.Object) -> bytes
              Return the path of a dentry from the root of its filesystem.

              Parameters
                     dentry -- struct dentry *

       drgn.helpers.linux.fs.inode_path(inode: drgn.Object) -> Optional[bytes]
              Return any path of an inode from the root of its filesystem.

              Parameters
                     inode -- struct inode *

              Returns
                     Path, or None if the inode has no aliases.

       drgn.helpers.linux.fs.inode_paths(inode: drgn.Object) -> Iterator[bytes]
              Return  an  iterator  over  all  of  the  paths  of  an  inode from the root of its
              filesystem.

              Parameters
                     inode -- struct inode *

       drgn.helpers.linux.fs.mount_src(mnt: drgn.Object) -> bytes
              Get the source device name for a mount.

              Parameters
                     mnt -- struct mount *

       drgn.helpers.linux.fs.mount_dst(mnt: drgn.Object) -> bytes
              Get the path of a mount point.

              Parameters
                     mnt -- struct mount *

       drgn.helpers.linux.fs.mount_fstype(mnt: drgn.Object) -> bytes
              Get the filesystem type of a mount.

              Parameters
                     mnt -- struct mount *

       drgn.helpers.linux.fs.for_each_mount(prog_or_ns:  Union[drgn.Program,  drgn.Object],  src:
       Optional[drgn.Path]  =  None, dst: Optional[drgn.Path] = None, fstype: Optional[Union[str,
       bytes]] = None) -> Iterator[drgn.Object]
              Iterate over all of the mounts in a given namespace.

              Parametersprog_or_ns -- struct mnt_namespace  *  to  iterate  over,  or  Program  to
                       iterate over initial mount namespace.

                     • src -- Only include mounts with this source device name.

                     • dst -- Only include mounts with this destination path.

                     • fstype -- Only include mounts with this filesystem type.

              Returns
                     Iterator of struct mount * objects.

       drgn.helpers.linux.fs.print_mounts(prog_or_ns:   Union[drgn.Program,   drgn.Object],  src:
       Optional[drgn.Path] = None, dst: Optional[drgn.Path] = None,  fstype:  Optional[Union[str,
       bytes]] = None) -> None
              Print  the  mount  table  of  a  given  namespace.  The  arguments  are the same as
              for_each_mount(). The output format is similar to /proc/mounts but prints the value
              of each struct mount *.

       drgn.helpers.linux.fs.fget(task: drgn.Object, fd: drgn.IntegerLike) -> drgn.Object
              Return the kernel file descriptor of the fd of a given task.

              Parameterstask -- struct task_struct *fd -- File descriptor.

              Returns
                     struct file *

       drgn.helpers.linux.fs.for_each_file(task:      drgn.Object)     ->     Iterator[Tuple[int,
       drgn.Object]]
              Iterate over all of the files open in a given task.

              Parameters
                     task -- struct task_struct *

              Returns
                     Iterator of (fd, struct file *) tuples.

       drgn.helpers.linux.fs.print_files(task: drgn.Object) -> None
              Print the open files of a given task.

              Parameters
                     task -- struct task_struct *

   IDR
       The drgn.helpers.linux.idr module provides helpers for working with the IDR data structure
       in include/linux/idr.h. An IDR provides a mapping from an ID to a pointer.

       drgn.helpers.linux.idr.idr_find(idr: drgn.Object, id: drgn.IntegerLike) -> drgn.Object
              Look up the entry with the given ID in an IDR.

              Parametersidr -- struct idr *id -- Entry ID.

              Returns
                     void * found entry, or NULL if not found.

       drgn.helpers.linux.idr.idr_for_each(idr: drgn.Object) -> Iterator[Tuple[int, drgn.Object]]
              Iterate over all of the entries in an IDR.

              Parameters
                     idr -- struct idr *

              Returns
                     Iterator of (index, void *) tuples.

   Kconfig
       The  drgn.helpers.linux.kconfig module provides helpers for reading the Linux kernel build
       configuration.

       drgn.helpers.linux.kconfig.get_kconfig(prog: drgn.Program) -> Mapping[str, str]
              Get the kernel build configuration as a mapping from the option name to the value.

              >>> get_kconfig(prog)['CONFIG_SMP']
              'y'
              >>> get_kconfig(prog)['CONFIG_HZ']
              '300'

              This is only supported if the kernel was compiled with CONFIG_IKCONFIG.  Note  that
              most Linux distributions do not enable this option.

   Kernfs
       The  drgn.helpers.linux.kernfs  module provides helpers for working with the kernfs pseudo
       filesystem interface in include/linux/kernfs.h.

       drgn.helpers.linux.kernfs.kernfs_name(kn: drgn.Object) -> bytes
              Get the name of the given kernfs node.

              Parameters
                     kn -- struct kernfs_node *

       drgn.helpers.linux.kernfs.kernfs_path(kn: drgn.Object) -> bytes
              Get full path of the given kernfs node.

              Parameters
                     kn -- struct kernfs_node *

       drgn.helpers.linux.kernfs.kernfs_walk(parent: drgn.Object, path: drgn.Path) -> drgn.Object
              Find the kernfs node with the given path from the given parent kernfs node.

              Parametersparent -- struct kernfs_node *path -- Path name.

              Returns
                     struct kernfs_node * (NULL if not found)

   Linked Lists
       The drgn.helpers.linux.list module provides helpers for  working  with  the  doubly-linked
       list implementations (struct list_head and struct hlist_head) in include/linux/list.h.

       drgn.helpers.linux.list.list_empty(head: drgn.Object) -> bool
              Return whether a list is empty.

              Parameters
                     head -- struct list_head *

       drgn.helpers.linux.list.list_is_singular(head: drgn.Object) -> bool
              Return whether a list has only one element.

              Parameters
                     head -- struct list_head *

       drgn.helpers.linux.list.list_first_entry(head:  drgn.Object,  type: Union[str, drgn.Type],
       member: str) -> drgn.Object
              Return the first entry in a list.

              The list is assumed to be non-empty.

              See also list_first_entry_or_null().

              Parametershead -- struct list_head *type -- Entry type.

                     • member -- Name of list node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.list.list_first_entry_or_null(head:   drgn.Object,   type:   Union[str,
       drgn.Type], member: str) -> drgn.Object
              Return the first entry in a list or NULL if the list is empty.

              See also list_first_entry().

              Parametershead -- struct list_head *type -- Entry type.

                     • member -- Name of list node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.list.list_last_entry(head:  drgn.Object,  type:  Union[str, drgn.Type],
       member: str) -> drgn.Object
              Return the last entry in a list.

              The list is assumed to be non-empty.

              Parametershead -- struct list_head *type -- Entry type.

                     • member -- Name of list node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.list.list_next_entry(pos: drgn.Object, member: str) -> drgn.Object
              Return the next entry in a list.

              Parameterspos -- type*member -- Name of list node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.list.list_prev_entry(pos: drgn.Object, member: str) -> drgn.Object
              Return the previous entry in a list.

              Parameterspos -- type*member -- Name of list node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.list.list_for_each(head: drgn.Object) -> Iterator[drgn.Object]
              Iterate over all of the nodes in a list.

              Parameters
                     head -- struct list_head *

              Returns
                     Iterator of struct list_head * objects.

       drgn.helpers.linux.list.list_for_each_reverse(head: drgn.Object) -> Iterator[drgn.Object]
              Iterate over all of the nodes in a list in reverse order.

              Parameters
                     head -- struct list_head *

              Returns
                     Iterator of struct list_head * objects.

       drgn.helpers.linux.list.list_for_each_entry(type:     Union[str,     drgn.Type],     head:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all of the entries in a list.

              Parameterstype -- Entry type.

                     • head -- struct list_head *member -- Name of list node member in entry type.

              Returns
                     Iterator of type * objects.

       drgn.helpers.linux.list.list_for_each_entry_reverse(type:   Union[str,  drgn.Type],  head:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all of the entries in a list in reverse order.

              Parameterstype -- Entry type.

                     • head -- struct list_head *member -- Name of list node member in entry type.

              Returns
                     Iterator of type * objects.

       drgn.helpers.linux.list.validate_list(head: drgn.Object) -> None
              Validate that the next and prev pointers in a list are consistent.

              Parameters
                     head -- struct list_head *

              Raises ValidationError -- if the list is invalid

       drgn.helpers.linux.list.validate_list_for_each(head: drgn.Object) -> Iterator[drgn.Object]
              Like list_for_each(), but validates the list like validate_list() while iterating.

              Parameters
                     head -- struct list_head *

              Raises ValidationError -- if the list is invalid

       drgn.helpers.linux.list.validate_list_for_each_entry(type:  Union[str,  drgn.Type],  head:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Like  list_for_each_entry(),  but  validates  the  list  like validate_list() while
              iterating.

              Parameterstype -- Entry type.

                     • head -- struct list_head *member -- Name of list node member in entry type.

              Raises ValidationError -- if the list is invalid

       drgn.helpers.linux.list.hlist_empty(head: drgn.Object) -> bool
              Return whether a hash list is empty.

              Parameters
                     head -- struct hlist_head *

       drgn.helpers.linux.list.hlist_for_each(head: drgn.Object) -> Iterator[drgn.Object]
              Iterate over all of the nodes in a hash list.

              Parameters
                     head -- struct hlist_head *

              Returns
                     Iterator of struct hlist_node * objects.

       drgn.helpers.linux.list.hlist_for_each_entry(type:    Union[str,     drgn.Type],     head:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all of the entries in a hash list.

              Parameterstype -- Entry type.

                     • head -- struct hlist_head *member -- Name of list node member in entry type.

              Returns
                     Iterator of type * objects.

   Nulls Lists
       The  drgn.helpers.linux.list_nulls  module  provides  helpers for working with the special
       version   of   lists   (struct   hlist_nulls_head   and   struct   hlist_nulls_node)    in
       include/linux/list_nulls.h  where  the  end  of  list is not a NULL pointer, but a "nulls"
       marker.

       drgn.helpers.linux.list_nulls.is_a_nulls(pos: drgn.Object) -> bool
              Return whether a a pointer is a nulls marker.

              Parameters
                     pos -- struct hlist_nulls_node *

       drgn.helpers.linux.list_nulls.hlist_nulls_empty(head: drgn.Object) -> bool
              Return whether a nulls hash list is empty.

              Parameters
                     head -- struct hlist_nulls_head *

       drgn.helpers.linux.list_nulls.hlist_nulls_for_each_entry(type:   Union[str,    drgn.Type],
       head: drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all the entries in a nulls hash list.

              Parameterstype -- Entry type.

                     • head -- struct hlist_nulls_head *member -- Name of list node member in entry type.

              Returns
                     Iterator of type * objects.

   Lockless Lists
       The  drgn.helpers.linux.llist  module  provides  helpers  for  working  with the lockless,
       NULL-terminated,  singly-linked  list  implementation  in  include/linux/llist.h   (struct
       llist_head and struct llist_node).

       drgn.helpers.linux.llist.llist_empty(head: drgn.Object) -> bool
              Return whether an llist is empty.

              Parameters
                     head -- struct llist_head *

       drgn.helpers.linux.llist.llist_is_singular(head: drgn.Object) -> bool
              Return whether an llist has only one element.

              Parameters
                     head -- struct llist_head *

       drgn.helpers.linux.llist.llist_first_entry(head: drgn.Object, type: Union[str, drgn.Type],
       member: str) -> drgn.Object
              Return the first entry in an llist.

              The list is assumed to be non-empty.

              See also llist_first_entry_or_null().

              Parametershead -- struct llist_head *type -- Entry type.

                     • member -- Name of struct llist_node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.llist.llist_first_entry_or_null(head:  drgn.Object,  type:   Union[str,
       drgn.Type], member: str) -> drgn.Object
              Return the first entry in an llist or NULL if the llist is empty.

              See also llist_first_entry().

              Parametershead -- struct llist_head *type -- Entry type.

                     • member -- Name of struct llist_node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.llist.llist_next_entry(pos: drgn.Object, member: str) -> drgn.Object
              Return the next entry in an llist.

              Parameterspos -- type*member -- Name of struct llist_node member in entry type.

              Returns
                     type *

       drgn.helpers.linux.llist.llist_for_each(node: drgn.Object) -> Iterator[drgn.Object]
              Iterate over all of the nodes in an llist starting from a given node.

              Parameters
                     node -- struct llist_node *

              Returns
                     Iterator of struct llist_node * objects.

       drgn.helpers.linux.llist.llist_for_each_entry(type:     Union[str,    drgn.Type],    node:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all of the entries in an llist starting from a given node.

              Parameterstype -- Entry type.

                     • node -- struct llist_node *member -- Name of struct llist_node member in entry type.

              Returns
                     Iterator of type * objects.

   Memory Management
       The drgn.helpers.linux.mm module provides  helpers  for  working  with  the  Linux  memory
       management (MM) subsystem. Only AArch64, s390x, and x86-64 are currently supported.

       drgn.helpers.linux.mm.PageActive(page: drgn.Object) -> bool
              Return whether the PG_active flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageChecked(page: drgn.Object) -> bool
              Return whether the PG_checked flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageDirty(page: drgn.Object) -> bool
              Return whether the PG_dirty flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageDoubleMap(page: drgn.Object) -> bool
              Return whether the PG_double_map flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageError(page: drgn.Object) -> bool
              Return whether the PG_error flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageForeign(page: drgn.Object) -> bool
              Return whether the PG_foreign flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageHWPoison(page: drgn.Object) -> bool
              Return whether the PG_hwpoison flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageHasHWPoisoned(page: drgn.Object) -> bool
              Return whether the PG_has_hwpoisoned flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageIdle(page: drgn.Object) -> bool
              Return whether the PG_idle flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageIsolated(page: drgn.Object) -> bool
              Return whether the PG_isolated flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageLRU(page: drgn.Object) -> bool
              Return whether the PG_lru flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageLocked(page: drgn.Object) -> bool
              Return whether the PG_locked flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageMappedToDisk(page: drgn.Object) -> bool
              Return whether the PG_mappedtodisk flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageMlocked(page: drgn.Object) -> bool
              Return whether the PG_mlocked flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageOwnerPriv1(page: drgn.Object) -> bool
              Return whether the PG_owner_priv_1 flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PagePinned(page: drgn.Object) -> bool
              Return whether the PG_pinned flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PagePrivate(page: drgn.Object) -> bool
              Return whether the PG_private flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PagePrivate2(page: drgn.Object) -> bool
              Return whether the PG_private_2 flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageReadahead(page: drgn.Object) -> bool
              Return whether the PG_readahead flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageReclaim(page: drgn.Object) -> bool
              Return whether the PG_reclaim flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageReferenced(page: drgn.Object) -> bool
              Return whether the PG_referenced flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageReported(page: drgn.Object) -> bool
              Return whether the PG_reported flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageReserved(page: drgn.Object) -> bool
              Return whether the PG_reserved flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageSavePinned(page: drgn.Object) -> bool
              Return whether the PG_savepinned flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageSkipKASanPoison(page: drgn.Object) -> bool
              Return whether the PG_skip_kasan_poison flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageSlab(page: drgn.Object) -> bool
              Return whether the PG_slab flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageSlobFree(page: drgn.Object) -> bool
              Return whether the PG_slob_free flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageSwapBacked(page: drgn.Object) -> bool
              Return whether the PG_swapbacked flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageUncached(page: drgn.Object) -> bool
              Return whether the PG_uncached flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageUnevictable(page: drgn.Object) -> bool
              Return whether the PG_unevictable flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageUptodate(page: drgn.Object) -> bool
              Return whether the PG_uptodate flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageVmemmapSelfHosted(page: drgn.Object) -> bool
              Return whether the PG_vmemmap_self_hosted flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageWaiters(page: drgn.Object) -> bool
              Return whether the PG_waiters flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageWorkingset(page: drgn.Object) -> bool
              Return whether the PG_workingset flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageWriteback(page: drgn.Object) -> bool
              Return whether the PG_writeback flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageXenRemapped(page: drgn.Object) -> bool
              Return whether the PG_xen_remapped flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageYoung(page: drgn.Object) -> bool
              Return whether the PG_young flag is set on a page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageCompound(page: drgn.Object) -> bool
              Return whether a page is part of a compound page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageHead(page: drgn.Object) -> bool
              Return whether a page is a head page in a compound page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.PageTail(page: drgn.Object) -> bool
              Return whether a page is a tail page in a compound page.

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.compound_head(page: drgn.Object) -> drgn.Object
              Get the head page associated with a page.

              If  page is a tail page, this returns the head page of the compound page it belongs
              to. Otherwise, it returns page.

              Parameters
                     page -- struct page *

              Returns
                     struct page *

       drgn.helpers.linux.mm.compound_order(page: drgn.Object) -> drgn.Object
              Return the allocation order of a potentially compound page.

              Parameters
                     page -- struct page *

              Returns
                     unsigned int

       drgn.helpers.linux.mm.compound_nr(page: drgn.Object) -> drgn.Object
              Return the number of pages in a potentially compound page.

              Parameters
                     page -- struct page *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.page_size(page: drgn.Object) -> drgn.Object
              Return the number of bytes in a potentially compound page.

              Parameters
                     page -- struct page *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.decode_page_flags(page: drgn.Object) -> str
              Get a human-readable representation of the flags set on a page.

              >>> decode_page_flags(page)
              'PG_uptodate|PG_dirty|PG_lru|PG_reclaim|PG_swapbacked|PG_readahead|PG_savepinned|PG_isolated|PG_reported'

              Parameters
                     page -- struct page *

       drgn.helpers.linux.mm.for_each_page(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over every struct page * from the minimum to the maximum page.

              NOTE:
                 This may include offline pages which  don't  have  a  valid  struct  page.  Wrap
                 accesses in a try ... except drgn.FaultError:

                 >>> for page in for_each_page(prog):
                 ...     try:
                 ...         if PageLRU(page):
                 ...             print(hex(page))
                 ...     except drgn.FaultError:
                 ...         continue
                 0xfffffb4a000c0000
                 0xfffffb4a000c0040
                 ...

                 This may be fixed in the future.

              Returns
                     Iterator of struct page * objects.

       drgn.helpers.linux.mm.PFN_PHYS(pfn: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.PFN_PHYS(prog: drgn.Program, pfn: drgn.IntegerLike) -> drgn.Object
              Get the physical address of a page frame number (PFN).

              The PFN can be given as an Object or as a Program and an integer.

              Parameters
                     pfn -- unsigned long

              Returns
                     phys_addr_t

       drgn.helpers.linux.mm.PHYS_PFN(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.PHYS_PFN(prog: drgn.Program, addr: int) -> drgn.Object
              Get the page frame number (PFN) of a physical address.

              The address can be given as an Object or as a Program and an integer.

              Parameters
                     addr -- phys_addr_t

              Returns
                     unsigned long

       drgn.helpers.linux.mm.page_to_pfn(page: drgn.Object) -> drgn.Object
              Get the page frame number (PFN) of a page.

              Parameters
                     page -- struct page *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.page_to_phys(page: drgn.Object) -> drgn.Object
              Get the physical address of a page.

              Parameters
                     page -- struct page *

              Returns
                     phys_addr_t

       drgn.helpers.linux.mm.page_to_virt(page: drgn.Object) -> drgn.Object
              Get the directly mapped virtual address of a page.

              Parameters
                     page -- struct page *

              Returns
                     void *

       drgn.helpers.linux.mm.pfn_to_page(pfn: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.pfn_to_page(prog:    drgn.Program,    pfn:    drgn.IntegerLike)   ->
       drgn.Object
              Get the page with a page frame number (PFN).

              The PFN can be given as an Object or as a Program and an integer.

              Parameters
                     pfn -- unsigned long

              Returns
                     struct page *

       drgn.helpers.linux.mm.pfn_to_virt(pfn: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.pfn_to_virt(prog:   drgn.Program,    pfn:    drgn.IntegerLike)    ->
       drgn.Object
              Get the directly mapped virtual address of a page frame number (PFN).

              The PFN can be given as an Object or as a Program and an integer.

              Parameters
                     pfn -- unsigned long

              Returns
                     void *

       drgn.helpers.linux.mm.phys_to_page(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.phys_to_page(prog:    drgn.Program,   addr:   drgn.IntegerLike)   ->
       drgn.Object
              Get the page containing a physical address.

              The address can be given as an Object or as a Program and an integer.

              Parameters
                     addr -- phys_addr_t

              Returns
                     struct page *

       drgn.helpers.linux.mm.phys_to_virt(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.phys_to_virt(prog:   drgn.Program,   addr:   drgn.IntegerLike)    ->
       drgn.Object
              Get the directly mapped virtual address of a physical address.

              The address can be given as an Object or as a Program and an integer.

              Parameters
                     addr -- phys_addr_t

              Returns
                     void *

       drgn.helpers.linux.mm.virt_to_page(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.virt_to_page(prog:    drgn.Program,   addr:   drgn.IntegerLike)   ->
       drgn.Object
              Get the page containing a directly mapped virtual address.

              The address can be given as an Object or as a Program and an integer.

              NOTE:
                 This only works for virtual addresses  from  the  "direct  map".  This  includes
                 address from:

                 • kmalloc

                 • Slab allocator

                 • Page allocator

                 But not:

                 • vmalloc

                 • vmap

                 • ioremap

                 • Symbols (function pointers, global variables)

                 For  vmalloc  or vmap addresses, use vmalloc_to_page(addr). For arbitrary kernel
                 addresses, use follow_page(prog["init_mm"].address_of_(), addr).

              Parameters
                     addr -- void *

              Returns
                     struct page *

       drgn.helpers.linux.mm.virt_to_pfn(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.virt_to_pfn(prog:   drgn.Program,   addr:    drgn.IntegerLike)    ->
       drgn.Object
              Get the page frame number (PFN) of a directly mapped virtual address.

              The address can be given as an Object or as a Program and an integer.

              NOTE:
                 This only works for virtual addresses from the "direct map". For vmalloc or vmap
                 addresses,  use  vmalloc_to_pfn(addr).  For  arbitrary  kernel  addresses,   use
                 follow_pfn(prog["init_mm"].address_of_(), addr).

              Parameters
                     addr -- void *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.virt_to_phys(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.virt_to_phys(prog:    drgn.Program,   addr:   drgn.IntegerLike)   ->
       drgn.Object
              Get the physical address of a directly mapped virtual address.

              The address can be given as an Object or as a Program and an integer.

              NOTE:
                 This only works for virtual addresses  from  the  "direct  map".  For  arbitrary
                 kernel addresses, use follow_phys(prog["init_mm"].address_of_(), addr).

              Parameters
                     addr -- void *

              Returns
                     phys_addr_t

       drgn.helpers.linux.mm.follow_page(mm: drgn.Object, addr: drgn.IntegerLike) -> drgn.Object
              Get the page that a virtual address maps to in a virtual address space.

              >>> task = find_task(prog, 113)
              >>> follow_page(task.mm, 0x7fffbbb6d4d0)
              *(struct page *)0xffffbe4bc0337b80 = {
                  ...
              }

              Parametersmm -- struct mm_struct *addr -- void *

              Returns
                     struct page *

       drgn.helpers.linux.mm.follow_pfn(mm: drgn.Object, addr: drgn.IntegerLike) -> drgn.Object
              Get the page frame number (PFN) that a virtual address maps to in a virtual address
              space.

              >>> task = find_task(prog, 113)
              >>> follow_pfn(task.mm, 0x7fffbbb6d4d0)
              (unsigned long)52718

              Parametersmm -- struct mm_struct *addr -- void *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.follow_phys(mm: drgn.Object, addr: drgn.IntegerLike) -> drgn.Object
              Get the physical address that a virtual address maps to in a virtual address space.

              >>> task = find_task(prog, 113)
              >>> follow_phys(task.mm, 0x7fffbbb6d4d0)
              (phys_addr_t)215934160

              Parametersmm -- struct mm_struct *addr -- void *

              Returns
                     phys_addr_t

       drgn.helpers.linux.mm.vmalloc_to_page(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.vmalloc_to_page(prog:  drgn.Program,  addr:   drgn.IntegerLike)   ->
       drgn.Object
              Get the page containing a vmalloc or vmap address.

              The address can be given as an Object or as a Program and an integer.

              >>> task = find_task(prog, 113)
              >>> vmalloc_to_page(task.stack)
              *(struct page *)0xffffbe4bc00a2200 = {
                  ...
              }

              Parameters
                     addr -- void *

              Returns
                     struct page *

       drgn.helpers.linux.mm.vmalloc_to_pfn(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.mm.vmalloc_to_pfn(prog:   drgn.Program,   addr:   drgn.IntegerLike)  ->
       drgn.Object
              Get the page frame number (PFN) containing a vmalloc or vmap address.

              The address can be given as an Object or as a Program and an integer.

              >>> task = find_task(prog, 113)
              >>> vmalloc_to_pfn(task.stack)
              (unsigned long)10376

              Parameters
                     addr -- void *

              Returns
                     unsigned long

       drgn.helpers.linux.mm.access_process_vm(task:  drgn.Object,   address:   drgn.IntegerLike,
       size: drgn.IntegerLike) -> bytes
              Read memory from a task's virtual address space.

              >>> task = find_task(prog, 1490152)
              >>> access_process_vm(task, 0x7f8a62b56da0, 12)
              b'hello, world'

              Parameterstask -- struct task_struct *address -- Starting address.

                     • size -- Number of bytes to read.

       drgn.helpers.linux.mm.access_remote_vm(mm:  drgn.Object,  address: drgn.IntegerLike, size:
       drgn.IntegerLike) -> bytes
              Read memory from a virtual address space. This is similar  to  access_process_vm(),
              but it takes a struct mm_struct * instead of a struct task_struct *.

              >>> task = find_task(prog, 1490152)
              >>> access_remote_vm(task.mm, 0x7f8a62b56da0, 12)
              b'hello, world'

              Parametersmm -- struct mm_struct *address -- Starting address.

                     • size -- Number of bytes to read.

       drgn.helpers.linux.mm.cmdline(task: drgn.Object) -> List[bytes]
              Get the list of command line arguments of a task.

              >>> cmdline(find_task(prog, 1495216))
              [b'vim', b'drgn/helpers/linux/mm.py']

                 $ tr '\0' ' ' < /proc/1495216/cmdline
                 vim drgn/helpers/linux/mm.py

              Parameters
                     task -- struct task_struct *

       drgn.helpers.linux.mm.environ(task: drgn.Object) -> List[bytes]
              Get the list of environment variables of a task.

              >>> environ(find_task(prog, 1497797))
              [b'HOME=/root', b'PATH=/usr/local/sbin:/usr/local/bin:/usr/bin', b'LOGNAME=root']

                 $ tr '\0' '\n' < /proc/1497797/environ
                 HOME=/root
                 PATH=/usr/local/sbin:/usr/local/bin:/usr/bin
                 LOGNAME=root

              Parameters
                     task -- struct task_struct *

       drgn.helpers.linux.mm.totalram_pages(prog: drgn.Program) -> int
              Return the total number of RAM memory pages.

   Networking
       The  drgn.helpers.linux.net  module  provides  helpers  for  working with the Linux kernel
       networking subsystem.

       drgn.helpers.linux.net.SOCKET_I(inode: drgn.Object) -> drgn.Object
              Get a socket from an inode referring to the socket.

              Parameters
                     inode -- struct inode *

              Returns
                     struct socket *

              Raises ValueError -- If inode does not refer to a socket

       drgn.helpers.linux.net.SOCK_INODE(sock: drgn.Object) -> drgn.Object
              Get the inode of a socket.

              Parameters
                     sock -- struct socket *

              Returns
                     struct inode *

       drgn.helpers.linux.net.for_each_net(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all network namespaces in the system.

              Returns
                     Iterator of struct net * objects.

       drgn.helpers.linux.net.get_net_ns_by_inode(inode: drgn.Object) -> drgn.Object
              Get  a  network   namespace   from   a   network   namespace   NSFS   inode,   e.g.
              /proc/$PID/ns/net or /var/run/netns/$NAME.

              Parameters
                     inode -- struct inode *

              Returns
                     struct net *

              Raises ValueError -- if inode is not a network namespace inode

       drgn.helpers.linux.net.get_net_ns_by_fd(task:   drgn.Object,   fd:   drgn.IntegerLike)  ->
       drgn.Object
              Get a network namespace from a task and a file descriptor referring  to  a  network
              namespace NSFS inode, e.g. /proc/$PID/ns/net or /var/run/netns/$NAME.

              Parameterstask -- struct task_struct *fd -- File descriptor.

              Returns
                     struct net *

              Raises ValueError -- If fd does not refer to a network namespace inode

       drgn.helpers.linux.net.netdev_for_each_tx_queue(dev: drgn.Object) -> Iterator[drgn.Object]
              Iterate over all TX queues for a network device.

              Parameters
                     dev -- struct net_device *

              Returns
                     Iterator of struct netdev_queue * objects.

       drgn.helpers.linux.net.netdev_get_by_index(prog_or_net:  Union[drgn.Program, drgn.Object],
       ifindex: drgn.IntegerLike) -> drgn.Object
              Get the network device with the given interface index number.

              Parametersprog_or_net -- struct net * containing the device, or Program to  use  the
                       initial network namespace.

                     • ifindex -- Network interface index number.

              Returns
                     struct net_device * (NULL if not found)

       drgn.helpers.linux.net.netdev_get_by_name(prog_or_net:  Union[drgn.Program,  drgn.Object],
       name: Union[str, bytes]) -> drgn.Object
              Get the network device with the given interface name.

              Parametersprog_or_net -- struct net * containing the device, or Program to  use  the
                       initial network namespace.

                     • name -- Network interface name.

              Returns
                     struct net_device * (NULL if not found)

       drgn.helpers.linux.net.sk_fullsock(sk: drgn.Object) -> bool
              Check whether a socket is a full socket, i.e., not a time-wait or request socket.

              Parameters
                     sk -- struct sock *

       drgn.helpers.linux.net.sk_nulls_for_each(head: drgn.Object) -> Iterator[drgn.Object]
              Iterate  over  all  the entries in a nulls hash list of sockets specified by struct
              hlist_nulls_head head.

              Parameters
                     head -- struct hlist_nulls_head *

              Returns
                     Iterator of struct sock * objects.

   NUMA Node Masks
       The drgn.helpers.linux.nodemask module provides helpers for working with NUMA  node  masks
       from include/linux/nodemask.h.

       drgn.helpers.linux.nodemask.for_each_node_mask(mask: drgn.Object) -> Iterator[int]
              Iterate over all of the NUMA nodes in the given mask.

              Parameters
                     mask -- nodemask_t

       drgn.helpers.linux.nodemask.for_each_node_state(prog:         drgn.Program,         state:
       drgn.IntegerLike) -> Iterator[int]
              Iterate over all NUMA nodes in the given state.

              Parameters
                     state -- enum node_states (e.g., N_NORMAL_MEMORY)

       drgn.helpers.linux.nodemask.for_each_node(prog: drgn.Program) -> Iterator[int]
              Iterate over all possible NUMA nodes.

       drgn.helpers.linux.nodemask.for_each_online_node(prog: drgn.Program) -> Iterator[int]
              Iterate over all online NUMA nodes.

       drgn.helpers.linux.nodemask.node_state(node: drgn.IntegerLike, state: drgn.Object) -> bool
              Return whether the given NUMA node has the given state.

              Parametersnode -- NUMA node number.

                     • state -- enum node_states (e.g., N_NORMAL_MEMORY)

   Per-CPU
       The drgn.helpers.linux.percpu module provides helpers for working with per-CPU allocations
       from include/linux/percpu.h and per-CPU counters from include/linux/percpu_counter.h.

       drgn.helpers.linux.percpu.per_cpu_ptr(ptr:    drgn.Object,   cpu:   drgn.IntegerLike)   ->
       drgn.Object
              Return the per-CPU pointer for a given CPU.

              >>> prog["init_net"].loopback_dev.pcpu_refcnt
              (int *)0x2c980
              >>> per_cpu_ptr(prog["init_net"].loopback_dev.pcpu_refcnt, 7)
              *(int *)0xffff925e3ddec980 = 4

              Parametersptr -- Per-CPU pointer, i.e., type __percpu *. For global variables,  it's
                       usually easier to use per_cpu().

                     • cpu -- CPU number.

              Returns
                     type * object.

       drgn.helpers.linux.percpu.per_cpu(var: drgn.Object, cpu: drgn.IntegerLike) -> drgn.Object
              Return the per-CPU variable for a given CPU.

              >>> print(repr(prog["runqueues"]))
              Object(prog, 'struct rq', address=0x278c0)
              >>> per_cpu(prog["runqueues"], 6).curr.comm
              (char [16])"python3"

              Parametersvar  --  Per-CPU  variable,  i.e.,  type  __percpu  (not  a  pointer;  use
                       per_cpu_ptr() for that).

                     • cpu -- CPU number.

              Returns
                     type object.

       drgn.helpers.linux.percpu.percpu_counter_sum(fbc: drgn.Object) -> int
              Return the sum of a per-CPU counter.

              Parameters
                     fbc -- struct percpu_counter *

   Process IDS
       The drgn.helpers.linux.pid  module  provides  helpers  for  looking  up  process  IDs  and
       processes.

       drgn.helpers.linux.pid.find_pid(prog_or_ns:    Union[drgn.Program,    drgn.Object],   pid:
       drgn.IntegerLike) -> drgn.Object
              Return the struct pid * for the given PID number.

              Parameters
                     prog_or_ns -- struct pid_namespace * object, or Program to use  initial  PID
                     namespace.

              Returns
                     struct pid *

       drgn.helpers.linux.pid.find_task(prog_or_ns:    Union[drgn.Program,   drgn.Object],   pid:
       drgn.IntegerLike) -> drgn.Object
              Return the task with the given PID.

              Parameters
                     prog_or_ns -- struct pid_namespace * object, or Program to use  initial  PID
                     namespace.

              Returns
                     struct task_struct *

       drgn.helpers.linux.pid.pid_task(pid:    drgn.Object,    pid_type:   drgn.IntegerLike)   ->
       drgn.Object
              Return the struct task_struct * containing the given struct  pid  *  of  the  given
              type.

              Parameterspid -- struct pid *pid_type -- enum pid_type

              Returns
                     struct task_struct *

       drgn.helpers.linux.pid.for_each_pid(prog_or_ns:   Union[drgn.Program,   drgn.Object])   ->
       Iterator[drgn.Object]
              Iterate over all PIDs in a namespace.

              Parameters
                     prog_or_ns -- struct pid_namespace * to iterate over, or Program to  iterate
                     over initial PID namespace.

              Returns
                     Iterator of struct pid * objects.

       drgn.helpers.linux.pid.for_each_task(prog_or_ns:   Union[drgn.Program,   drgn.Object])  ->
       Iterator[drgn.Object]
              Iterate over all of the tasks visible in a namespace.

              Parameters
                     prog_or_ns -- struct pid_namespace * to iterate over, or Program to  iterate
                     over initial PID namespace.

              Returns
                     Iterator of struct task_struct * objects.

   Log Buffer
       The  drgn.helpers.linux.printk  module  provides  helpers for reading the Linux kernel log
       buffer.

       class drgn.helpers.linux.printk.PrintkRecord
              Bases: NamedTuple

              Kernel log record.

              text: bytes
                     Message text.

              facility: int
                     syslog(3) facility.

              level: int
                     Log level.

              seq: int
                     Sequence number.

              timestamp: int
                     Timestamp in nanoseconds.

              caller_tid: Optional[int]
                     Thread ID of thread that logged this record, if available.

                     This is available if the message was logged from task  context  and  if  the
                     kernel saves the printk() caller ID.

                     As  of  Linux  5.10,  the  kernel always saves the caller ID. From Linux 5.1
                     through  5.9,  it  is  saved  only  if  the   kernel   was   compiled   with
                     CONFIG_PRINTK_CALLER. Before that, it is never saved.

              caller_cpu: Optional[int]
                     Processor ID of CPU that logged this record, if available.

                     This  is  available  only if the message was logged when not in task context
                     (e.g., in an interrupt handler) and if the kernel saves the printk()  caller
                     ID.

                     See caller_tid for when the kernel saves the caller ID.

              continuation: bool
                     Whether this record is a continuation of a previous record.

              context: Dict[bytes, bytes]
                     Additional metadata for the message.

                     See the /dev/kmsg documentation for an explanation of the keys and values.

       drgn.helpers.linux.printk.get_printk_records(prog: drgn.Program) -> List[PrintkRecord]
              Get a list of records in the kernel log buffer.

       drgn.helpers.linux.printk.get_dmesg(prog: drgn.Program) -> bytes
              Get the contents of the kernel log buffer formatted like dmesg(1).

              The format of each line is:

                 [   timestamp] message

              If  you  need  to  format  the log buffer differently, use get_printk_records() and
              format it yourself.

   Radix Trees
       The drgn.helpers.linux.radixtree module provides helpers for working with radix trees from
       include/linux/radix-tree.h.

       SEE ALSO:
          XArrays, which were introduced in Linux 4.20 as a replacement for radix trees.

       drgn.helpers.linux.radixtree.radix_tree_lookup(root: drgn.Object, index: drgn.IntegerLike)
       -> drgn.Object
              Look up the entry at a given index in a radix tree.

              Parametersroot -- struct radix_tree_root *index -- Entry index.

              Returns
                     void * found entry, or NULL if not found.

       drgn.helpers.linux.radixtree.radix_tree_for_each(root: drgn.Object) -> Iterator[Tuple[int,
       drgn.Object]]
              Iterate over all of the entries in a radix tree.

              Parameters
                     root -- struct radix_tree_root *

              Returns
                     Iterator of (index, void *) tuples.

   Red-Black Trees
       The  drgn.helpers.linux.rbtree  module  provides  helpers for working with red-black trees
       from include/linux/rbtree.h.

       drgn.helpers.linux.rbtree.RB_EMPTY_ROOT(root: drgn.Object) -> bool
              Return whether a red-black tree is empty.

              Parameters
                     node -- struct rb_root *

       drgn.helpers.linux.rbtree.RB_EMPTY_NODE(node: drgn.Object) -> bool
              Return whether a red-black tree node is empty, i.e., not inserted in a tree.

              Parameters
                     node -- struct rb_node *

       drgn.helpers.linux.rbtree.rb_parent(node: drgn.Object) -> drgn.Object
              Return the parent node of a red-black tree node.

              Parameters
                     node -- struct rb_node *

              Returns
                     struct rb_node *

       drgn.helpers.linux.rbtree.rb_first(root: drgn.Object) -> drgn.Object
              Return the first node (in sort order) in a red-black tree, or NULL if the  tree  is
              empty.

              Parameters
                     root -- struct rb_root *

              Returns
                     struct rb_node *

       drgn.helpers.linux.rbtree.rb_last(root: drgn.Object) -> drgn.Object
              Return  the  last  node (in sort order) in a red-black tree, or NULL if the tree is
              empty.

              Parameters
                     root -- struct rb_root *

              Returns
                     struct rb_node *

       drgn.helpers.linux.rbtree.rb_next(node: drgn.Object) -> drgn.Object
              Return the next node (in sort order) after a red-black node, or NULL if the node is
              the last node in the tree or is empty.

              Parameters
                     node -- struct rb_node *

              Returns
                     struct rb_node *

       drgn.helpers.linux.rbtree.rb_prev(node: drgn.Object) -> drgn.Object
              Return  the  previous  node (in sort order) before a red-black node, or NULL if the
              node is the first node in the tree or is empty.

              Parameters
                     node -- struct rb_node *

              Returns
                     struct rb_node *

       drgn.helpers.linux.rbtree.rbtree_inorder_for_each(root:   drgn.Object)    ->    Iterator[‐
       drgn.Object]
              Iterate over all of the nodes in a red-black tree, in sort order.

              Parameters
                     root -- struct rb_root *

              Returns
                     Iterator of struct rb_node * objects.

       drgn.helpers.linux.rbtree.rbtree_inorder_for_each_entry(type: Union[str, drgn.Type], root:
       drgn.Object, member: str) -> Iterator[drgn.Object]
              Iterate over all of the entries in a red-black tree in sorted order.

              Parameterstype -- Entry type.

                     • root -- struct rb_root *member -- Name of struct rb_node member in entry type.

              Returns
                     Iterator of type * objects.

       drgn.helpers.linux.rbtree.rb_find(type: Union[str, drgn.Type], root: drgn.Object,  member:
       str, key: KeyType, cmp: Callable[[KeyType, drgn.Object], int]) -> drgn.Object
              Find an entry in a red-black tree given a key and a comparator function.

              Note  that this function does not have an analogue in the Linux kernel source code,
              as tree searches are all open-coded.

              Parameterstype -- Entry type.

                     • root -- struct rb_root *member -- Name of struct rb_node member in entry type.

                     • key -- Key to find.

                     • cmp -- Callback taking key and entry that returns < 0 if the key  is  less
                       than the entry, > 0 if the key is greater than the entry, and 0 if the key
                       matches the entry.

              Returns
                     type * found entry, or NULL if not found.

       drgn.helpers.linux.rbtree.validate_rbtree(type: Union[str, drgn.Type], root:  drgn.Object,
       member: str, cmp: Callable[[drgn.Object, drgn.Object], int], allow_equal: bool) -> None
              Validate a red-black tree.

              This checks that:

              1. The tree is a valid binary search tree ordered according to cmp.

              2. If allow_equal is False, there are no nodes that compare equal according to cmp.

              3. The rb_parent pointers are consistent.

              4. The  red-black  tree  requirements are satisfied: the root node is black, no red
                 node has a red child, and every path from any node to any of its descendant leaf
                 nodes goes through the same number of black nodes.

              Parameterstype -- Entry type.

                     • root -- struct rb_root *member -- Name of struct rb_node member in entry type.

                     • cmp  --  Callback  taking two type * entry objects that returns < 0 if the
                       first entry is less than the second entry, >  0  if  the  first  entry  is
                       greater than the second entry, and 0 if they are equal.

                     • allow_equal  -- Whether the tree may contain entries that compare equal to
                       each other.

              Raises ValidationError -- if the tree is invalid

       drgn.helpers.linux.rbtree.validate_rbtree_inorder_for_each_entry(type:          Union[str,
       drgn.Type],  root:  drgn.Object,  member:  str,  cmp: Callable[[drgn.Object, drgn.Object],
       int], allow_equal: bool) -> Iterator[drgn.Object]
              Like  rbtree_inorder_for_each_entry(),  but  validates  the  red-black  tree   like
              validate_rbtree() while iterating.

              Parameterstype -- Entry type.

                     • root -- struct rb_root *member -- Name of struct rb_node member in entry type.

                     • cmp  --  Callback  taking two type * entry objects that returns < 0 if the
                       first entry is less than the second entry, >  0  if  the  first  entry  is
                       greater than the second entry, and 0 if they are equal.

                     • allow_equal  -- Whether the tree may contain entries that compare equal to
                       each other.

              Raises ValidationError -- if the tree is invalid

   CPU Scheduler
       The drgn.helpers.linux.sched module provides  helpers  for  working  with  the  Linux  CPU
       scheduler.

       drgn.helpers.linux.sched.idle_task(prog:    drgn.Program,    cpu:   drgn.IntegerLike)   ->
       drgn.Object
              Return the idle thread (PID 0, a.k.a swapper) for the given CPU.

              >>> idle_task(prog, 1).comm
              (char [16])"swapper/1"

              Parameters
                     cpu -- CPU number.

              Returns
                     struct task_struct *

       drgn.helpers.linux.sched.task_cpu(task: drgn.Object) -> int
              Return the CPU number that the given task last ran on.

              Parameters
                     task -- struct task_struct *

       drgn.helpers.linux.sched.task_state_to_char(task: drgn.Object) -> str
              Get the state of the task as a character (e.g., 'R' for running). See ps(1)  for  a
              description of the process state codes.

              Parameters
                     task -- struct task_struct *

       drgn.helpers.linux.sched.loadavg(prog: drgn.Program) -> Tuple[float, float, float]
              Return  system  load  averaged  over  1,  5  and 15 minutes as tuple of three float
              values.

              >>> loadavg(prog)
              (2.34, 0.442, 1.33)

   Slab Allocator
       The drgn.helpers.linux.slab module provides  helpers  for  working  with  the  Linux  slab
       allocator.

       WARNING:
          Beware of slab merging when using these helpers. See slab_cache_is_merged().

       drgn.helpers.linux.slab.slab_cache_is_merged(slab_cache: drgn.Object) -> bool
              Return whether a slab cache has been merged with any other slab caches.

              Unless  configured  otherwise,  the  kernel  may merge slab caches of similar sizes
              together. See the SLUB  users  guide  and  slab_merge/slab_nomerge  in  the  kernel
              parameters documentation.

              This  can  cause  confusion, as only the name of the first cache will be found, and
              objects of different types will be mixed in the same slab cache.

              For example, suppose that we have two types, struct foo and struct bar, which  have
              the same size but are otherwise unrelated. If the kernel creates a slab cache named
              foo for struct foo, then another slab cache named bar for  struct  bar,  then  slab
              cache  foo  will  be  reused  instead  of  creating  another  cache for bar. So the
              following will fail:

                 find_slab_cache(prog, "bar")

              And the following will also return struct bar * objects errantly casted  to  struct
              foo *:

                 slab_cache_for_each_allocated_object(
                     find_slab_cache(prog, "foo"), "struct foo"
                 )

              Unfortunately,  these issues are difficult to work around generally, so one must be
              prepared to handle them on a case-by-case basis (e.g., by looking up the slab cache
              by  its  variable name and by checking that members of the structure make sense for
              the expected type).

              Parameters
                     slab_cache -- struct kmem_cache *

       drgn.helpers.linux.slab.get_slab_cache_aliases(prog: drgn.Program) -> Dict[str, str]
              Return a dict mapping slab cache name to the cache it was merged with.

              The SLAB and SLUB subsystems can merge caches  with  similar  settings  and  object
              sizes,  as described in the documentation of slab_cache_is_merged(). In some cases,
              the information about which caches were merged is lost, but in other cases, we  can
              reconstruct  the  info.   This function reconstructs the mapping, but requires that
              the kernel is configured with CONFIG_SLUB and CONFIG_SYSFS.

              The returned dict maps from original cache name, to merged cache name. You can  use
              this  mapping  to  discover  the correct cache to lookup via find_slab_cache(). The
              dict contains an entry only for  caches  which  were  merged  into  a  cache  of  a
              different name.

              >>> cache_to_merged = get_slab_cache_aliases(prog)
              >>> cache_to_merged["dnotify_struct"]
              'avc_xperms_data'
              >>> "avc_xperms_data" in cache_to_merged
              False
              >>> find_slab_cache(prog, "dnotify_struct") is None
              True
              >>> find_slab_cache(prog, "avc_xperms_data") is None
              False

              Warning
                     This function will only work on kernels which are built with CONFIG_SLUB and
                     CONFIG_SYSFS enabled.

              Parameters
                     prog -- Program to search

              Returns
                     Mapping of slab cache name to final merged name

              Raises LookupError -- If the helper fails because the debugged kernel doesn't  have
                     the required configuration

       drgn.helpers.linux.slab.for_each_slab_cache(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all slab caches.

              Returns
                     Iterator of struct kmem_cache * objects.

       drgn.helpers.linux.slab.find_slab_cache(prog:  drgn.Program,  name:  Union[str, bytes]) ->
       Optional[drgn.Object]
              Return the slab cache with the given name.

              Parameters
                     name -- Slab cache name.

              Returns
                     struct kmem_cache *

       drgn.helpers.linux.slab.print_slab_caches(prog: drgn.Program) -> None
              Print the name and struct kmem_cache * value of all slab caches.

       drgn.helpers.linux.slab.slab_cache_for_each_allocated_object(slab_cache:      drgn.Object,
       type: Union[str, drgn.Type]) -> Iterator[drgn.Object]
              Iterate over all allocated objects in a given slab cache.

              Only  the  SLUB  and  SLAB  allocators  are  supported;  SLOB does not store enough
              information to identify objects in a slab cache.

              >>> dentry_cache = find_slab_cache(prog, "dentry")
              >>> next(slab_cache_for_each_allocated_object(dentry_cache, "struct dentry"))
              *(struct dentry *)0xffff905e41404000 = {
                  ...
              }

              Parametersslab_cache -- struct kmem_cache *type -- Type of object in the slab cache.

              Returns
                     Iterator of type * objects.

       drgn.helpers.linux.slab.slab_object_info(addr: drgn.Object) -> Optional['SlabObjectInfo']

       drgn.helpers.linux.slab.slab_object_info(prog: drgn.Program,  addr:  drgn.IntegerLike)  ->
       Optional[SlabObjectInfo]
              Get information about an address if it is in a slab object.

              >>> ptr = find_task(prog, 1).comm.address_of_()
              >>> info = slab_object_info(ptr)
              >>> info
              SlabObjectInfo(slab_cache=Object(prog, 'struct kmem_cache *', address=0xffffdb93c0045e18), slab=Object(prog, 'struct slab *', value=0xffffdb93c0045e00), address=0xffffa2bf81178000, allocated=True)

              Note  that  SlabObjectInfo.address is the start address of the object, which may be
              less than addr if addr points to a member inside of the object:

              >>> ptr.value_() - info.address
              1496
              >>> offsetof(prog.type("struct task_struct"), "comm")
              1496

              The address can be given as an Object or as a Program and an integer.

              Note that SLOB does not store enough information to identify slab  objects,  so  if
              the kernel is configured to use SLOB, this will always return None.

              Parameters
                     addr -- void *

              Returns
                     SlabObjectInfo if addr is in a slab object, or None if not.

       class drgn.helpers.linux.slab.SlabObjectInfo
              Information about an object in the slab allocator.

              slab_cache: drgn.Object
                     struct kmem_cache * that the slab object is from.

              slab: drgn.Object
                     Slab containing the slab object.

                     Since Linux v5.17, this is a struct slab *. Before that, it is a struct page
                     *.

              address: int
                     Address of the slab object.

              allocated: bool
                     True if the object is allocated, False if it is free.

       drgn.helpers.linux.slab.find_containing_slab_cache(addr: drgn.Object) -> drgn.Object

       drgn.helpers.linux.slab.find_containing_slab_cache(prog:        drgn.Program,        addr:
       drgn.IntegerLike) -> drgn.Object
              Get the slab cache that an address was allocated from, if any.

              The address can be given as an Object or as a Program and an integer.

              Note  that  SLOB  does  not  store enough information to identify objects in a slab
              cache, so if the kernel is configured to use SLOB, this will always return NULL.

              Parameters
                     addr -- void *

              Returns
                     struct kmem_cache * containing addr, or NULL if addr  is  not  from  a  slab
                     cache.

   Traffic Control (TC)
       The  drgn.helpers.linux.tc  module  provides  helpers  for  working  with the Linux kernel
       Traffic Control (TC) subsystem.

       drgn.helpers.linux.tc.qdisc_lookup(dev:   drgn.Object,   major:    drgn.IntegerLike)    ->
       drgn.Object
              Get  a  Qdisc  from  a  device  and a major handle number.  It is worth noting that
              conventionally handles are hexadecimal, e.g. 10: in a tc command means major handle
              0x10.

              Parametersdev -- struct net_device *major -- Qdisc major handle number.

              Returns
                     struct Qdisc * (NULL if not found)

   TCP
       The  drgn.helpers.linux.tcp  module  provides helpers for working with the TCP protocol in
       the Linux kernel.

       drgn.helpers.linux.tcp.sk_tcpstate(sk: drgn.Object) -> drgn.Object
              Return the TCP protocol state of a socket.

              Parameters
                     sk -- struct sock *

              Returns
                     TCP state enum value.

   Users
       The drgn.helpers.linux.user module provides helpers for working with users  in  the  Linux
       kernel.

       drgn.helpers.linux.user.find_user(prog:      drgn.Program,     uid:     Union[drgn.Object,
       drgn.IntegerLike]) -> drgn.Object
              Return the user structure with the given UID.

              Parameters
                     uid -- kuid_t object or integer.

              Returns
                     struct user_struct * (NULL if not found)

       drgn.helpers.linux.user.for_each_user(prog: drgn.Program) -> Iterator[drgn.Object]
              Iterate over all users in the system.

              Returns
                     Iterator of struct user_struct * objects.

   XArrays
       The drgn.helpers.linux.xarray module provides helpers for working  with  the  XArray  data
       structure from include/linux/xarray.h.

       NOTE:
          XArrays  were  introduced  in  Linux 4.20 as a replacement for radix trees.  To make it
          easier to work with data structures that were changed from a radix tree  to  an  XArray
          (like   struct   address_space::i_pages),   drgn   treats   XArrays   and  radix  trees
          interchangeably in some cases.

          Specifically, xa_load() is equivalent  to  radix_tree_lookup(),  and  xa_for_each()  is
          equivalent  to  radix_tree_for_each(),  except  that  the  radix  tree  helpers  assume
          advanced=False.  (Therefore,  xa_load()  and  xa_for_each()  also   accept   a   struct
          radix_tree_root  *,  and  radix_tree_lookup()  and  radix_tree_for_each() also accept a
          struct xarray *.)

       drgn.helpers.linux.xarray.xa_load(xa: drgn.Object, index: drgn.IntegerLike,  *,  advanced:
       bool = False) -> drgn.Object
              Look up the entry at a given index in an XArray.

              >>> entry = xa_load(inode.i_mapping.i_pages.address_of_(), 2)
              >>> cast("struct page *", entry)
              *(struct page *)0xffffed6980306f40 = {
                  ...
              }

              Parametersxa -- struct xarray *index -- Entry index.

                     • advanced  --  Whether  to return nodes only visible to the XArray advanced
                       API. If False, zero entries (see xa_is_zero()) will be returned as NULL.

              Returns
                     void * found entry, or NULL if not found.

       drgn.helpers.linux.xarray.xa_for_each(xa: drgn.Object,  *,  advanced:  bool  =  False)  ->
       Iterator[Tuple[int, drgn.Object]]
              Iterate over all of the entries in an XArray.

              >>> for index, entry in xa_for_each(inode.i_mapping.i_pages.address_of_()):
              ...     print(index, entry)
              ...
              0 (void *)0xffffed6980356140
              1 (void *)0xffffed6980306f80
              2 (void *)0xffffed6980306f40
              3 (void *)0xffffed6980355b40

              Parametersxa -- struct xarray *advanced  --  Whether  to return nodes only visible to the XArray advanced
                       API. If False, zero entries (see xa_is_zero()) will be skipped.

              Returns
                     Iterator of (index, void *) tuples.

       drgn.helpers.linux.xarray.xa_is_value(entry: drgn.Object) -> bool
              Return whether an XArray entry is a value.

              See xa_to_value().

              Parameters
                     entry -- void *

       drgn.helpers.linux.xarray.xa_to_value(entry: drgn.Object) -> drgn.Object
              Return the value in an XArray entry.

              In addition to pointers, XArrays can store integers  between  0  and  LONG_MAX.  If
              xa_is_value() returns True, use this to get the stored integer.

              >>> entry = xa_load(xa, 9)
              >>> entry
              (void *)0xc9
              >>> xa_is_value(entry)
              True
              >>> xa_to_value(entry)
              (unsigned long)100

              Parameters
                     entry -- void *

              Returns
                     unsigned long

       drgn.helpers.linux.xarray.xa_is_zero(entry: drgn.Object) -> bool
              Return whether an XArray entry is a "zero" entry.

              A  zero  entry  is  an  entry  that was reserved but is not present. These are only
              visible to the XArray advanced API, so they are  only  returned  by  xa_load()  and
              xa_for_each() when advanced = True.

              >>> entry = xa_load(xa, 10, advanced=True)
              >>> entry
              (void *)0x406
              >>> xa_is_zero(entry)
              True
              >>> xa_load(xa, 10)
              (void *)0

              Parameters
                     entry -- void *

   Case Studies
       These are writeups of real-world problems solved with drgn.

   Using Stack Trace Variables to Find a Kyber Bug
       Author: Omar Sandoval
       Date: June 9th, 2021

       Jakub Kicinski reported a crash in the Kyber I/O scheduler when he was testing Linux 5.12.
       He captured a core dump and asked me to  debug  it.  This  is  a  quick  writeup  of  that
       investigation.

       First, we can get the task that crashed:

          >>> task = per_cpu(prog["runqueues"], prog["crashing_cpu"]).curr

       Then, we can get its stack trace:

          >>> trace = prog.stack_trace(task)
          >>> trace
          #0  queued_spin_lock_slowpath (../kernel/locking/qspinlock.c:471:3)
          #1  queued_spin_lock (../include/asm-generic/qspinlock.h:85:2)
          #2  do_raw_spin_lock (../kernel/locking/spinlock_debug.c:113:2)
          #3  spin_lock (../include/linux/spinlock.h:354:2)
          #4  kyber_bio_merge (../block/kyber-iosched.c:573:2)
          #5  blk_mq_sched_bio_merge (../block/blk-mq-sched.h:37:9)
          #6  blk_mq_submit_bio (../block/blk-mq.c:2182:6)
          #7  __submit_bio_noacct_mq (../block/blk-core.c:1015:9)
          #8  submit_bio_noacct (../block/blk-core.c:1048:10)
          #9  submit_bio (../block/blk-core.c:1125:9)
          #10 submit_stripe_bio (../fs/btrfs/volumes.c:6553:2)
          #11 btrfs_map_bio (../fs/btrfs/volumes.c:6642:3)
          #12 btrfs_submit_data_bio (../fs/btrfs/inode.c:2440:8)
          #13 submit_one_bio (../fs/btrfs/extent_io.c:175:9)
          #14 submit_extent_page (../fs/btrfs/extent_io.c:3229:10)
          #15 __extent_writepage_io (../fs/btrfs/extent_io.c:3793:9)
          #16 __extent_writepage (../fs/btrfs/extent_io.c:3872:8)
          #17 extent_write_cache_pages (../fs/btrfs/extent_io.c:4514:10)
          #18 extent_writepages (../fs/btrfs/extent_io.c:4635:8)
          #19 do_writepages (../mm/page-writeback.c:2352:10)
          #20 __writeback_single_inode (../fs/fs-writeback.c:1467:8)
          #21 writeback_sb_inodes (../fs/fs-writeback.c:1732:3)
          #22 __writeback_inodes_wb (../fs/fs-writeback.c:1801:12)
          #23 wb_writeback (../fs/fs-writeback.c:1907:15)
          #24 wb_check_background_flush (../fs/fs-writeback.c:1975:10)
          #25 wb_do_writeback (../fs/fs-writeback.c:2063:11)
          #26 wb_workfn (../fs/fs-writeback.c:2091:20)
          #27 process_one_work (../kernel/workqueue.c:2275:2)
          #28 worker_thread (../kernel/workqueue.c:2421:4)
          #29 kthread (../kernel/kthread.c:292:9)
          #30 ret_from_fork+0x1f/0x2a (../arch/x86/entry/entry_64.S:294)

       It  looks like kyber_bio_merge() tried to lock an invalid spinlock. For reference, this is
       the source code of kyber_bio_merge():

          static bool kyber_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio,
                                      unsigned int nr_segs)
          {
                  struct kyber_hctx_data *khd = hctx->sched_data;
                  struct blk_mq_ctx *ctx = blk_mq_get_ctx(hctx->queue);
                  struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
                  unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
                  struct list_head *rq_list = &kcq->rq_list[sched_domain];
                  bool merged;

                  spin_lock(&kcq->lock);
                  merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
                  spin_unlock(&kcq->lock);

                  return merged;
          }

       When printed, the kcq structure containing the spinlock indeed looks like garbage (omitted
       for brevity).

       A  crash  course  on  the  Linux  kernel  block  layer:  for each block device, there is a
       "software queue" (struct blk_mq_ctx *ctx) for each CPU  and  a  "hardware  queue"  (struct
       blk_mq_hw_ctx  *hctx)  for  each I/O queue provided by the device. Each hardware queue has
       one or more software queues assigned to it.  Kyber  keeps  additional  data  per  hardware
       queue (struct kyber_hctx_data *khd) and per software queue (struct kyber_ctx_queue *kcq).

       Let's  try  to  figure  out  where  the  bad kcq came from. It should be an element of the
       khd->kcqs array (khd is optimized out, but we can recover it from hctx->sched_data):

          >>> trace[4]["khd"]
          (struct kyber_hctx_data *)<absent>
          >>> hctx = trace[4]["hctx"]
          >>> khd = cast("struct kyber_hctx_data *", hctx.sched_data)
          >>> trace[4]["kcq"] - khd.kcqs
          (ptrdiff_t)1
          >>> hctx.nr_ctx
          (unsigned short)1

       So the kcq is for the second software queue, but the hardware queue is  only  supposed  to
       have one software queue. Let's see which CPU was assigned to the hardware queue:

          >>> hctx.ctxs[0].cpu
          (unsigned int)6

       Here's the problem: we're not running on CPU 6, we're running on CPU 19:

          >>> prog["crashing_cpu"]
          (int)19

       And  CPU 19 is assigned to a different hardware queue that actually does have two software
       queues:

          >>> ctx = per_cpu_ptr(hctx.queue.queue_ctx, 19)
          >>> other_hctx = ctx.hctxs[hctx.type]
          >>> other_hctx == hctx
          False
          >>> other_hctx.nr_ctx
          (unsigned short)2

       The bug is that the caller gets the hctx for the current CPU, then kyber_bio_merge()  gets
       the ctx for the current CPU, and if the thread is migrated to another CPU in between, they
       won't match. The fix is to get a consistent view of the hctx  and  ctx.  The  commit  that
       fixes this is here.

   Getting Debugging Symbols
       Most  Linux  distributions  don't  install  debugging  symbols  for  installed packages by
       default. This page documents how to install debugging symbols on common distributions.  If
       drgn prints an error like:

          $ sudo drgn
          could not get debugging information for:
          kernel (could not find vmlinux for 5.14.14-200.fc34.x86_64)
          ...

       Then you need to install debugging symbols.

   Fedora
       Fedora  makes  it  very  easy  to install debugging symbols with the DNF debuginfo-install
       plugin, which is installed by default. Simply run sudo dnf debuginfo-install $package:

          $ sudo dnf debuginfo-install python3

       To find out what package owns a binary, use rpm -qf:

          $ rpm -qf $(which python3)
          python3-3.9.7-1.fc34.x86_64

       To install symbols for the running kernel:

          $ sudo dnf debuginfo-install kernel-$(uname -r)

       Also see the Fedora documentation.

   Debian
       Debian requires you to manually add the debugging symbol repositories:

          $ sudo tee /etc/apt/sources.list.d/debug.list << EOF
          deb http://deb.debian.org/debian-debug/ $(lsb_release -cs)-debug main
          deb http://deb.debian.org/debian-debug/ $(lsb_release -cs)-proposed-updates-debug main
          EOF
          $ sudo apt update

       Then, debugging symbol packages can be installed with sudo apt  install.   Some  debugging
       symbol packages are named with a -dbg suffix:

          $ sudo apt install python3-dbg

       And some are named with a -dbgsym suffix:

          $ sudo apt install coreutils-dbgsym

       You  can  use the find-dbgsym-packages command from the debian-goodies package to find the
       correct name:

          $ sudo apt install debian-goodies
          $ find-dbgsym-packages $(which python3)
          libc6-dbg libexpat1-dbgsym python3.9-dbg zlib1g-dbgsym
          $ find-dbgsym-packages $(which cat)
          coreutils-dbgsym libc6-dbg

       To install symbols for the running kernel:

          $ sudo apt install linux-image-$(uname -r)-dbg

       Also see the Debian documentation.

   Ubuntu
       On Ubuntu, you must install the debugging symbol archive signing key and manually add  the
       debugging symbol repositories:

          $ sudo apt update
          $ sudo apt install ubuntu-dbgsym-keyring
          $ sudo tee /etc/apt/sources.list.d/debug.list << EOF
          deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted universe multiverse
          deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main restricted universe multiverse
          deb http://ddebs.ubuntu.com $(lsb_release -cs)-proposed main restricted universe multiverse
          EOF
          $ sudo apt update

       Like  Debian,  some  debugging  symbol  packages are named with a -dbg suffix and some are
       named with a -dbgsym suffix:

          $ sudo apt install python3-dbg
          $ sudo apt install coreutils-dbgsym

       You can use the find-dbgsym-packages command from the debian-goodies package to  find  the
       correct name:

          $ sudo apt install debian-goodies
          $ find-dbgsym-packages $(which python3)
          libc6-dbg libexpat1-dbgsym python3.9-dbg zlib1g-dbgsym
          $ find-dbgsym-packages $(which cat)
          coreutils-dbgsym libc6-dbg

       To install symbols for the running kernel:

          $ sudo apt install linux-image-$(uname -r)-dbgsym

       Also see the Ubuntu documentation.

   Arch Linux
       Arch  Linux  unfortunately  does  not  make  debugging symbols available. Packages must be
       manually rebuilt with debugging symbols enabled. See the ArchWiki and the feature request.

   Release Highlights
       These are highlights of each release of drgn focusing on a few  exciting  items  from  the
       full release notes.

   0.0.23 (Released June 28th, 2023)
       These  are  some  of  the  highlights  of drgn 0.0.23. See the GitHub release for the full
       release notes, including more improvements and bug fixes.

   Virtual Address Translation Helpers
       This release added several Linux kernel helpers for translating virtual addresses.

       follow_phys() translates a virtual address to a physical address in a given address space.
       For  example,  to  get the physical address that virtual address 0x7f7fe46a4270 maps to in
       process 115:

          >>> task = find_task(prog, 115)
          >>> address = 0x7f7fe46a4270
          >>> print(hex(follow_phys(task.mm, address)))
          0x4090270

       follow_page() translates a virtual address to the struct page * that it maps to:

          >>> follow_page(task.mm, address)
          *(struct page *)0xffffd20ac0102400 = {
              ...
          }

       follow_pfn() translates a virtual address to the page frame number (PFN) of the page  that
       it maps to:

          >>> follow_pfn(task.mm, address)
          (unsigned long)16528

       These   can   be   used  to  translate  arbitrary  kernel  virtual  addresses  by  passing
       prog["init_mm"].address_of_():

          >>> print(hex(follow_phys(prog["init_mm"].address_of_(), 0xffffffffc0483000)))
          0x2e4b000

   Vmalloc/Vmap Address Translation Helpers
       vmalloc_to_page() is a special case of follow_page() for vmalloc and vmap addresses:

          >>> vmalloc_to_page(prog, 0xffffffffc0477000)
          *(struct page *)0xffffc902400b8980 = {
              ...
          }

       Likewise, vmalloc_to_pfn() is  a  special  case  of  follow_pfn()  for  vmalloc  and  vmap
       addresses:

          >>> vmalloc_to_pfn(prog, 0xffffffffc0477000)
          (unsigned long)11814

   contrib Directory
       Martin  Liška,  Boris  Burkov,  and  Johannes  Thumshirn  added lots of new scripts to the
       contrib directory:

       • btrfs_tree.py: work-in-progress helpers for Btrfs B-trees

       • btrfs_tree_mod_log.py: simulator for the Btrfs tree modification log

       • dump_btrfs_bgs.py: print block groups in a Btrfs filesystem

       • kcore_list.py: print memory regions from /proc/kcorekernel_sys.py: print system information (similar to crash's sys command)

       • mount.py: print a filesystem mount table

       • platform_drivers.py: print registered platform driversvmmap.py: print memory mappings in a process (similar to /proc/$pid/maps)

       • vmstat.py: print information about kernel memory usage

   Embedding Interactive Mode
       drgn.cli.run_interactive() runs drgn's interactive mode. It can be used to embed  drgn  in
       another  application.  For  example,  you  could use it for a custom drgn.Program that the
       standard drgn CLI can't set up:

          import drgn
          import drgn.cli

          prog = drgn.Program()
          prog.add_type_finder(...)
          prog.add_object_finder(...)
          prog.add_memory_segment(...)
          drgn.cli.run_interactive(prog)

   Full s390x Support
       Sven Schnelle contributed s390x virtual address translation support. This is the state  of
       architecture support in this release:

   drgn 0.0.23 Architecture Support
               ┌─────────────┬─────────────────────┬──────────────┬─────────────────────┐
               │Architecture │ Linux        Kernel │ Stack Traces │ Virtual     Address │
               │             │ Modules             │              │ Translation         │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │x86-64       │ ✓                   │ ✓            │ ✓                   │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │AArch64      │ ✓                   │ ✓            │ ✓                   │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │ppc64        │ ✓                   │ ✓            │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │s390x        │ ✓                   │ ✓            │ ✓                   │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │i386         │ ✓                   │              │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │Arm          │ ✓                   │              │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │RISC-V       │ ✓                   │              │                     │
               └─────────────┴─────────────────────┴──────────────┴─────────────────────┘

   Linux 6.3 & 6.4 Support
       Linux 6.3 and 6.4 had an unusual number of breaking changes for drgn. Here are some errors
       you might see with older versions of drgn that are fixed in this release.

       On startup (fixed by Ido Schimmel):

          warning: could not get debugging information for:
          kernel modules (could not find loaded kernel modules: 'struct module' has no member 'core_size')

       From drgn.Program.stack_trace() and drgn.Thread.stack_trace():

          Exception: unknown ORC entry type 3

       From compound_order() and compound_nr():

          AttributeError: 'struct page' has no member 'compound_order'

       From for_each_disk() and for_each_partition():

          AttributeError: 'struct class' has no member 'p'

   Python 3.12 Support
       Python 3.12, currently in beta, changed an implementation detail that  drgn  depended  on,
       which caused crashes like:

          Py_SIZE: Assertion `ob->ob_type != &PyLong_Type' failed.

       Stephen Brennan fixed this.

   0.0.22 (Released January 5th, 2023)
       These  are  some  of  the  highlights  of drgn 0.0.22. See the GitHub release for the full
       release notes, including more improvements and bug fixes.

   Listing Stack Frame Locals
       drgn.StackFrame.locals() returns the names of all arguments and  local  variables  in  the
       scope  of  a  stack  frame.  This  allows  you to get a quick idea of what's going on in a
       function without needing to read the source code right away.

       Let's use the __schedule stack frame from the following trace as an example:

          >>> trace = prog.stack_trace(1)
          >>> trace
          #0  context_switch (./kernel/sched/core.c:5209:2)
          #1  __schedule (./kernel/sched/core.c:6521:8)
          #2  schedule (./kernel/sched/core.c:6597:3)
          #3  do_wait (./kernel/exit.c:1562:4)
          #4  kernel_wait4 (./kernel/exit.c:1706:8)
          #5  __do_sys_wait4 (./kernel/exit.c:1734:13)
          #6  do_syscall_x64 (./arch/x86/entry/common.c:50:14)
          #7  do_syscall_64 (./arch/x86/entry/common.c:80:7)
          #8  entry_SYSCALL_64+0x9b/0x197 (./arch/x86/entry/entry_64.S:120)
          #9  0x7f6a34a00057
          >>> trace[1].locals()
          ['sched_mode', 'prev', 'next', 'switch_count', 'prev_state', 'rf', 'rq', 'cpu']
          >>> for name in trace[1].locals():
          ...     print(name, trace[1][name].format_(dereference=False))
          ...
          sched_mode (unsigned int)0
          prev (struct task_struct *)0xffffa3b601178000
          next (struct task_struct *)0xffffa3b6026db800
          switch_count (unsigned long *)0xffffa3b601178528
          prev_state (unsigned long)<absent>
          rf (struct rq_flags){
                  .flags = (unsigned long)1,
                  .cookie = (struct pin_cookie){},
                  .clock_update_flags = (unsigned int)4,
          }
          rq (struct rq *)0xffffa3b67fda9640
          cpu (int)<absent>

       Compare this to the kernel source code.   Note  that  some  of  the  variables  have  been
       optimized out by the compiler.

       This feature was contributed by Stephen Brennan.

   Merged Slab Caches
       The  Linux  kernel  slab  allocator merges "similar" slab caches as an optimization, which
       often causes confusion.  slab_cache_is_merged() (added back in 0.0.20) returns whether  or
       not  a  slab  cache  has  been  merged,  but not what it was merged with. In this release,
       Stephen Brennan added get_slab_cache_aliases(), which provides a mapping from a slab cache
       name to the name of the cache it was merged into:

          >>> get_slab_cache_aliases(prog)
          {'io_kiocb': 'maple_node', 'ip_dst_cache': 'uid_cache', 'aio_kiocb': 'uid_cache', 'ip_fib_alias': 'Acpi-Parse', 'pid_namespace': 'pid', 'iommu_iova': 'vmap_area', 'fasync_cache': 'ftrace_event_field', 'dnotify_mark': 'Acpi-State', 'tcp_bind2_bucket': 'vmap_area', 'nsproxy': 'Acpi-Operand', 'shared_policy_node': 'ftrace_event_field', 'eventpoll_epi': 'pid', 'fib6_nodes': 'vmap_area', 'Acpi-Namespace': 'ftrace_event_field', 'posix_timers_cache': 'maple_node', 'inotify_inode_mark': 'Acpi-State', 'kernfs_iattrs_cache': 'trace_event_file', 'fs_cache': 'vmap_area', 'UDP-Lite': 'UDP', 'anon_vma_chain': 'vmap_area', 'ip6_dst_cache': 'maple_node', 'eventpoll_pwq': 'vmap_area', 'inet_peer_cache': 'uid_cache', 'fsnotify_mark_connector': 'numa_policy', 'ip_fib_trie': 'ftrace_event_field', 'filp': 'maple_node', 'dnotify_struct': 'numa_policy', 'UDPLITEv6': 'UDPv6', 'biovec-16': 'maple_node', 'PING': 'signal_cache', 'ep_head': 'blkdev_ioc', 'tcp_bind_bucket': 'pid', 'Acpi-ParseExt': 'Acpi-State', 'cred_jar': 'pid', 'ovl_aio_req': 'pid', 'pool_workqueue': 'maple_node', 'sigqueue': 'Acpi-State', 'file_lock_ctx': 'Acpi-Parse', 'kernfs_node_cache': 'pid'}

       This  means  that if you're looking for io_kiocb allocations, you actually need to look at
       the maple_node slab cache. Conversely, if you're looking at the maple_node slab cache, you
       need to be aware that it also contains allocations from all of the following slab caches:

          >>> [merged for merged, canonical in get_slab_cache_aliases(prog).items() if canonical == "maple_node"]
          ['io_kiocb', 'posix_timers_cache', 'ip6_dst_cache', 'filp', 'biovec-16', 'pool_workqueue']

   Slab Address Information
       This  release  extended  identify_address()  to  show  additional  information  about slab
       allocations:

          >>> ptr1 = 0xffffa3b601178438
          >>> ptr2 = 0xffffa3b601176cc0
          >>> identify_address(prog, ptr1)
          'slab object: task_struct+0x438'
          >>> identify_address(prog, ptr2)
          'free slab object: mm_struct+0x0'

       This means that ptr1 is  an  address  0x438  bytes  into  an  allocated  object  from  the
       task_struct slab cache, and ptr2 is a free object from the mm_struct slab cache.

       slab_object_info() provides the same information programmatically:

          >>> slab_object_info(prog, ptr1)
          SlabObjectInfo(slab_cache=Object(prog, 'struct kmem_cache *', value=0xffffa3b601045500), slab=Object(prog, 'struct slab *', value=0xffffe80840045e00), address=0xffffa3b601178000, allocated=True)
          >>> slab_object_info(prog, ptr2)
          SlabObjectInfo(slab_cache=Object(prog, 'struct kmem_cache *', value=0xffffa3b601045900), slab=Object(prog, 'struct slab *', value=0xffffe80840045c00), address=0xffffa3b601176cc0, allocated=False)

   Annotated Stack Memory
       print_annotated_stack()  prints  a stack trace and all of its memory, identifying anything
       that it can:

          >>> print_annotated_stack(prog.stack_trace(1))
          STACK POINTER     VALUE
          [stack frame #0 at 0xffffffffaf8a68e9 (__schedule+0x429/0x488) in context_switch at ./kernel/sched/core.c:5209:2 (inlined)]
          [stack frame #1 at 0xffffffffaf8a68e9 (__schedule+0x429/0x488) in __schedule at ./kernel/sched/core.c:6521:8]
          ffffbb1ac0013d28: ffffffffaf4498f5 [function symbol: __flush_tlb_one_user+0x5]
          ffffbb1ac0013d30: 00000000af449feb
          ffffbb1ac0013d38: 0000000000000001
          ffffbb1ac0013d40: 0000000000000004
          ffffbb1ac0013d48: 25c5ff9539edc200
          ffffbb1ac0013d50: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013d58: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013d60: ffffbb1ac0013e10
          ffffbb1ac0013d68: ffffa3b601177ff0 [slab object: mm_struct+0x70]
          ffffbb1ac0013d70: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013d78: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013d80: ffffffffaf8a69d1 [function symbol: schedule+0x89]
          [stack frame #2 at 0xffffffffaf8a69d1 (schedule+0x89/0xc7) in schedule at ./kernel/sched/core.c:6597:3]
          ffffbb1ac0013d88: ffffbb1ac0013de8
          ffffbb1ac0013d90: 0000000000000000
          ffffbb1ac0013d98: ffffffffaf4595ee [function symbol: do_wait+0x231]
          [stack frame #3 at 0xffffffffaf4595ee (do_wait+0x231/0x2e3) in do_wait at ./kernel/exit.c:1562:4]
          ffffbb1ac0013da0: ffffa3b601178450 [slab object: task_struct+0x450]
          ffffbb1ac0013da8: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013db0: 0000000000000004
          ffffbb1ac0013db8: 0000000000000000
          ffffbb1ac0013dc0: 00007ffe0984a170
          ffffbb1ac0013dc8: 0000000000000000
          ffffbb1ac0013dd0: fffffffffffffffd
          ffffbb1ac0013dd8: 0000000000000004
          ffffbb1ac0013de0: ffffffffaf45a42f [function symbol: kernel_wait4+0xc2]
          [stack frame #4 at 0xffffffffaf45a42f (kernel_wait4+0xc2/0x11b) in kernel_wait4 at ./kernel/exit.c:1706:8]
          ffffbb1ac0013de8: 0000000400000004
          ffffbb1ac0013df0: 0000000000000000
          ffffbb1ac0013df8: 0000000000000000
          ffffbb1ac0013e00: 0000000000000000
          ffffbb1ac0013e08: 0000000000000000
          ffffbb1ac0013e10: ffffffff00000000
          ffffbb1ac0013e18: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013e20: ffffffffaf45890c [function symbol: child_wait_callback+0x0]
          ffffbb1ac0013e28: ffffa3b601188028 [slab object: signal_cache+0x28]
          ffffbb1ac0013e30: ffffa3b601188028 [slab object: signal_cache+0x28]
          ffffbb1ac0013e38: 000055d500000000
          ffffbb1ac0013e40: 25c5ff9539edc200
          ffffbb1ac0013e48: 0000000000000000
          ffffbb1ac0013e50: ffffbb1ac0013f30
          ffffbb1ac0013e58: ffffbb1ac0013f58
          ffffbb1ac0013e60: 0000000000000000
          ffffbb1ac0013e68: 0000000000000000
          ffffbb1ac0013e70: 0000000000000000
          ffffbb1ac0013e78: ffffffffaf45a4c0 [function symbol: __do_sys_wait4+0x38]
          [stack frame #5 at 0xffffffffaf45a4c0 (__do_sys_wait4+0x38/0x8c) in __do_sys_wait4 at ./kernel/exit.c:1734:13]
          ffffbb1ac0013e80: ffffffffaf8aaa21 [function symbol: _raw_spin_unlock_irq+0x10]
          ffffbb1ac0013e88: ffffffffaf46460c [function symbol: do_sigaction+0xf8]
          ffffbb1ac0013e90: ffffa3b601180020 [slab object: sighand_cache+0x20]
          ffffbb1ac0013e98: ffffa3b6028d02d0 [slab object: vm_area_struct+0x0]
          ffffbb1ac0013ea0: 25c5ff9539edc200
          ffffbb1ac0013ea8: 0000000000000002
          ffffbb1ac0013eb0: 00007ffe09849fb0
          ffffbb1ac0013eb8: ffffbb1ac0013f58
          ffffbb1ac0013ec0: 0000000000000000
          ffffbb1ac0013ec8: 0000000000000000
          ffffbb1ac0013ed0: 0000000000000046
          ffffbb1ac0013ed8: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013ee0: ffffa3b601178000 [slab object: task_struct+0x0]
          ffffbb1ac0013ee8: ffffbb1ac0013f58
          ffffbb1ac0013ef0: 0000000000000000
          ffffbb1ac0013ef8: ffffffffaf426def [function symbol: fpregs_assert_state_consistent+0x1b]
          ffffbb1ac0013f00: 0000000000000000
          ffffbb1ac0013f08: ffffffffaf4b2f53 [function symbol: exit_to_user_mode_prepare+0xa6]
          ffffbb1ac0013f10: 0000000000000000
          ffffbb1ac0013f18: 25c5ff9539edc200
          ffffbb1ac0013f20: ffffbb1ac0013f58
          ffffbb1ac0013f28: 0000000000000000
          ffffbb1ac0013f30: ffffbb1ac0013f48
          ffffbb1ac0013f38: ffffffffaf8a1573 [function symbol: do_syscall_64+0x70]
          [stack frame #6 at 0xffffffffaf8a1573 (do_syscall_64+0x70/0x8a) in do_syscall_x64 at ./arch/x86/entry/common.c:50:14 (inlined)]
          [stack frame #7 at 0xffffffffaf8a1573 (do_syscall_64+0x70/0x8a) in do_syscall_64 at ./arch/x86/entry/common.c:80:7]
          ffffbb1ac0013f40: 0000000000000000
          ffffbb1ac0013f48: 0000000000000000
          ffffbb1ac0013f50: ffffffffafa0009b [symbol: entry_SYSCALL_64+0x9b]
          [stack frame #8 at 0xffffffffafa0009b (entry_SYSCALL_64+0x9b/0x197) at ./arch/x86/entry/entry_64.S:120]
          ffffbb1ac0013f58: 0000000000000000
          [stack frame #9 at 0x7f6a34a00057]

       Like drgn.StackFrame.locals(), this provides a nice overview of everything happening in  a
       function,  which  might  include  useful  hints. Keep in mind that it may identify "stale"
       addresses for anything that a function hasn't reinitialized yet, and as always, be careful
       of slab cache merging.

       This was inspired by the crash bt -FF command. It was contributed by Nhat Pham.

   XArray Helpers
       XArrays  were introduced in Linux 4.20 as a replacement for radix trees. drgn's radix tree
       helpers also support XArrays in some cases, but this is awkward, not obvious, and  doesn't
       work for new, XArray-only functionality.

       This release added dedicated XArray helpers like xa_load() and xa_for_each().

   s390x Support
       Sven Schnelle contributed s390x support for Linux kernel modules and stack traces. This is
       the state of architecture support in this release:

   drgn 0.0.22 Architecture Support
               ┌─────────────┬─────────────────────┬──────────────┬─────────────────────┐
               │Architecture │ Linux        Kernel │ Stack Traces │ Virtual     Address │
               │             │ Modules             │              │ Translation         │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │x86-64       │ ✓                   │ ✓            │ ✓                   │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │AArch64      │ ✓                   │ ✓            │ ✓                   │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │ppc64        │ ✓                   │ ✓            │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │s390x        │ ✓                   │ ✓            │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │i386         │ ✓                   │              │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │Arm          │ ✓                   │              │                     │
               ├─────────────┼─────────────────────┼──────────────┼─────────────────────┤
               │RISC-V       │ ✓                   │              │                     │
               └─────────────┴─────────────────────┴──────────────┴─────────────────────┘

   Relicensing to LGPL
       drgn was originally licensed as GPLv3+. In this release, it was changed to LGPLv2.1+.  The
       motivation  for this change was to enable the long term vision for drgn that more projects
       can use it as a library providing programmatic interfaces for debugger functionality.  For
       example,  Object Introspection, a userspace memory profiler recently open sourced by Meta,
       uses drgn to parse debugging information.

AUTHOR

       Omar Sandoval

COPYRIGHT

       Omar Sandoval