Provided by: python3-ffcx_0.7.0-3_all bug

NAME

       fenicsformcompilerx - FEniCS Form Compiler X Documentation

       The  is  an  experimental  version  of  the  FEniCS  Form  Compiler.   It  is developed at
       https://github.com/FEniCS/ffcx.

                    ┌────────────────────────────┬──────────────────────────────────┐
                    │ffcx                        │ FEniCS Form Compiler (FFCx).     │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.__main__               │                                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.analysis               │ Compiler stage 1: Analysis.      │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.compiler               │ Main interface  for  compilation │
                    │                            │ of forms.                        │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.element_interface      │ Finite element interface.        │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.formatting             │ Compiler     stage    5:    Code │
                    │                            │ formatting.                      │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.main                   │ Command-line interface to FFCx.  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.naming                 │                                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.codegeneration         │                                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.options                │                                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.ir.representation      │ Compiler    stage    2:     Code │
                    │                            │ representation.                  │
                    ├────────────────────────────┼──────────────────────────────────┤
                    │ffcx.ir.representationutils │ Utility  functions for some code │
                    │                            │ shared between representations.  │
                    └────────────────────────────┴──────────────────────────────────┘

FFCX

       FEniCS Form Compiler (FFCx).

       FFCx compiles finite element variational forms into C code.

       ffcx.get_options(priority_options: dict | None = None) -> dict
              Return (a copy of) the merged option values for FFCX.

   Options
                 priority_options:
                        take priority over all other option values (see notes)

              returns
                     dict

              rtype  merged option values

              Notes

              This function sets the log level from the merged option values prior to returning.

              The ffcx_options.json files are cached on the first call. Subsequent calls to  this
              function use this cache.

              Priority ordering of options from highest to lowest is:

              • priority_options (API and command line options)

              • $PWD/ffcx_options.json (local options)

              • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

              • FFCX_DEFAULT_OPTIONS in ffcx.options

              XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

              Example ffcx_options.json file:
                 { “epsilon”: 1e-7 }

FFCX.__MAIN__

       ffcx.__main__.main(args=None)

FFCX.ANALYSIS

       Compiler stage 1: Analysis.

       This   module  implements  the  analysis/preprocessing  of  variational  forms,  including
       automatic selection of elements, degrees and form representation type.

       Functions

                      ┌─────────────────────────────────┬────────────────────────┐
                      │analyze_ufl_objects(ufl_objects, │ Analyze ufl object(s). │
                      │options)                         │                        │
                      └─────────────────────────────────┴────────────────────────┘

       Classes

                       ┌──────────────────────┬──────────────────────────────────┐
                       │UFLData(form_data,    │ Create    new    instance     of │
                       │unique_elements, ...) │ UFLData(form_data,               │
                       │                      │ unique_elements,                 │
                       │                      │ element_numbers,                 │
                       │                      │ unique_coordinate_elements,      │
                       │                      │ expressions)                     │
                       └──────────────────────┴──────────────────────────────────┘

       class       ffcx.analysis.UFLData(form_data,       unique_elements,       element_numbers,
       unique_coordinate_elements, expressions)
              Bases: NamedTuple

              Create  new  instance  of  UFLData(form_data,   unique_elements,   element_numbers,
              unique_coordinate_elements, expressions)

              element_numbers: Dict[_ElementBase, int]
                     Alias for field number 2

              expressions: List[Tuple[Expr, ndarray[Any, dtype[float64]], Expr]]
                     Alias for field number 4

              form_data: Tuple[FormData, ...]
                     Alias for field number 0

              unique_coordinate_elements: List[_ElementBase]
                     Alias for field number 3

              unique_elements: List[_ElementBase]
                     Alias for field number 1

       ffcx.analysis.analyze_ufl_objects(ufl_objects: List, options: Dict) -> UFLData
              Analyze ufl object(s).

   Options
       ufl_objects options
                 FFCx options. These options take priority over all other set options.

   Returns a data structure holding
              form_datas
                     Form_data objects

              unique_elements
                     Unique elements across all forms and expressions

              element_numbers
                     Mapping to unique numbers for all elements

              unique_coordinate_elements
                     Unique coordinate elements across all forms and expressions

              expressions
                     List  of  all  expressions after post-processing, with its evaluation points
                     and the original expression

       ffcx.analysis.convert_element(element: FiniteElementBase) -> _ElementBase
              Convert and element to a FFCx element.

       ffcx.analysis.warn()
              Issue a warning, or maybe ignore it or raise an exception.

              message
                     Text of the warning message.

              category
                     The Warning category subclass. Defaults to UserWarning.

              stacklevel
                     How far up the call stack to make this warning appear.  A  value  of  2  for
                     example attributes the warning to the caller of the code calling warn().

              source If supplied, the destroyed object which emitted a ResourceWarning

              skip_file_prefixes
                     An  optional  tuple  of  module  filename prefixes indicating frames to skip
                     during stacklevel computations for stack frame attribution.

FFCX.COMPILER

       Main interface for compilation of forms.

       Breaks the compilation into several sequential stages.  The output of each  stage  is  the
       input of the next stage.

   Compiler stages
       0.  Language, parsing

           • Input:  Python code or .ufl file

           • Output: UFL form

           This  stage  consists  of parsing and expressing a form in the UFL form language. This
           stage is handled by UFL.

       1.  Analysis

           • Input:  UFL form

           • Output: Preprocessed UFL form and FormData (metadata)

           This stage preprocesses the UFL form and extracts form metadata. It may  also  perform
           simplifications on the form.

       2.  Code representation

           • Input:  Preprocessed UFL form and FormData (metadata)

           • Output: Intermediate Representation (IR)

           This  stage examines the input and generates all data needed for code generation. This
           includes generation of finite element basis functions, extraction of data for  mapping
           of degrees of freedom and possible precomputation of integrals. Most of the complexity
           of compilation is handled in this stage.

           The IR is stored as a dictionary, mapping names of UFC functions to  data  needed  for
           generation of the corresponding code.

       3.  Code generation

           • Input:  Intermediate Representation (IR)

           • Output: C code

           This  stage  examines  the IR and generates the actual C code for the body of each UFC
           function.

           The code is stored as  a  dictionary,  mapping  names  of  UFC  functions  to  strings
           containing the C code of the body of each function.

       4.  Code formatting

           • Input:  C code

           • Output: C code files

           This stage examines the generated C++ code and formats it according to the UFC format,
           generating as output one or more .h/.c files conforming to the UFC format.

       Functions

                 ┌──────────────────────────────────┬──────────────────────────────────┐
                 │compile_ufl_objects(ufl_objects[, │ Generate  UFC  code  for a given │
                 │...])                             │ UFL objects.                     │
                 └──────────────────────────────────┴──────────────────────────────────┘

       ffcx.compiler.analyze_ufl_objects(ufl_objects: List, options: Dict) -> UFLData
              Analyze ufl object(s).

   Options
       ufl_objects options
                 FFCx options. These options take priority over all other set options.

   Returns a data structure holding
              form_datas
                     Form_data objects

              unique_elements
                     Unique elements across all forms and expressions

              element_numbers
                     Mapping to unique numbers for all elements

              unique_coordinate_elements
                     Unique coordinate elements across all forms and expressions

              expressions
                     List of all expressions after post-processing, with  its  evaluation  points
                     and the original expression

       ffcx.compiler.compile_ufl_objects(ufl_objects: List[Any], object_names: Dict = {}, prefix:
       str | None = None, options: Dict = {}, visualise: bool = False)
              Generate UFC code for a given UFL objects.

   Options
              @param ufl_objects:
                     Objects to be compiled. Accepts elements,  forms,  integrals  or  coordinate
                     mappings.

       ffcx.compiler.compute_ir(analysis: UFLData, object_names, prefix, options, visualise)
              Compute intermediate representation.

       ffcx.compiler.format_code(code, options: dict)
              Format  given  code  in UFC format. Returns two strings with header and source file
              contents.

       ffcx.compiler.generate_code(ir, options) -> CodeBlocks
              Generate code blocks from intermediate representation.

       ffcx.compiler.time() -> floating point number
              Return the current time in seconds since the Epoch.  Fractions of a second  may  be
              present if the system clock provides them.

FFCX.ELEMENT_INTERFACE

       Finite element interface.

       Functions

                 ┌──────────────────────────────────┬──────────────────────────────────┐
                 │QuadratureElement(cellname,       │                                  │
                 │value_shape[, ...])               │                                  │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │RealElement(element)              │                                  │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │basix_index(indices)              │ Get  the  Basix   index   of   a │
                 │                                  │ derivative.                      │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │convert_element(element)          │ Convert  and  element  to a FFCx │
                 │                                  │ element.                         │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │create_quadrature(cellname,       │ Create a quadrature rule.        │
                 │degree, rule, ...)                │                                  │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │map_facet_points(points,  facet,  │ Map  points  from  a   reference │
                 │cellname)                         │ facet to a physical facet.       │
                 ├──────────────────────────────────┼──────────────────────────────────┤
                 │reference_cell_vertices(cellname) │ Get the vertices of a  reference │
                 │                                  │ cell.                            │
                 └──────────────────────────────────┴──────────────────────────────────┘

       ffcx.element_interface.QuadratureElement(cellname:   str,  value_shape:  Tuple[int,  ...],
       scheme: str | None = None, degree: int | None = None, points: ndarray[Any, dtype[float64]]
       |  None  =  None,  weights:  ndarray[Any,  dtype[float64]]  |  None = None, mapname: str =
       'identity') -> _ElementBase

       ffcx.element_interface.RealElement(element: FiniteElementBase) -> _ElementBase

       ffcx.element_interface.basix_index(indices: Tuple[int]) -> int
              Get the Basix index of a derivative.

       ffcx.element_interface.convert_element(element: FiniteElementBase) -> _ElementBase
              Convert and element to a FFCx element.

       ffcx.element_interface.create_quadrature(cellname: str, degree: int, rule: str,  elements:
       List[_ElementBase]) -> Tuple[ndarray[Any, dtype[float64]], ndarray[Any, dtype[float64]]]
              Create a quadrature rule.

       ffcx.element_interface.map_facet_points(points:  ndarray[Any, dtype[float64]], facet: int,
       cellname: str) -> ndarray[Any, dtype[float64]]
              Map points from a reference facet to a physical facet.

       ffcx.element_interface.reference_cell_vertices(cellname:     str)     ->      ndarray[Any,
       dtype[float64]]
              Get the vertices of a reference cell.

FFCX.FORMATTING

       Compiler stage 5: Code formatting.

       This module implements the formatting of UFC code from a given dictionary of generated C++
       code for the body of each UFC function.

       It relies on templates for UFC code available as part of the module ufcx_utils.

       Functions

                 ┌─────────────────────────────────┬──────────────────────────────────┐
                 │format_code(code, options)       │ Format given code in UFC format. │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │write_code(code_h,       code_c, │                                  │
                 │prefix, output_dir)              │                                  │
                 └─────────────────────────────────┴──────────────────────────────────┘

       ffcx.formatting.format_code(code, options: dict)
              Format  given  code  in UFC format. Returns two strings with header and source file
              contents.

       ffcx.formatting.write_code(code_h, code_c, prefix, output_dir)

FFCX.MAIN

       Command-line interface to FFCx.

       Parse command-line arguments and generate code from input UFL form files.

       Functions

                                           ┌─────────────┬───┐
                                           │main([args]) │   │
                                           └─────────────┴───┘

       ffcx.main.get_options(priority_options: dict | None = None) -> dict
              Return (a copy of) the merged option values for FFCX.

   Options
                 priority_options:
                        take priority over all other option values (see notes)

              returns
                     dict

              rtype  merged option values

              Notes

              This function sets the log level from the merged option values prior to returning.

              The ffcx_options.json files are cached on the first call. Subsequent calls to  this
              function use this cache.

              Priority ordering of options from highest to lowest is:

              • priority_options (API and command line options)

              • $PWD/ffcx_options.json (local options)

              • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

              • FFCX_DEFAULT_OPTIONS in ffcx.options

              XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

              Example ffcx_options.json file:
                 { “epsilon”: 1e-7 }

       ffcx.main.main(args=None)

FFCX.NAMING

       Functions

                    ┌─────────────────────────────────┬─────────────────────────────┐
                    │compute_signature(ufl_objects,   │ Compute the signature hash. │
                    │tag)                             │                             │
                    ├─────────────────────────────────┼─────────────────────────────┤
                    │dofmap_name(ufl_element, prefix) │                             │
                    ├─────────────────────────────────┼─────────────────────────────┤
                    │expression_name(expression,      │                             │
                    │prefix)                          │                             │
                    ├─────────────────────────────────┼─────────────────────────────┤
                    │finite_element_name(ufl_element, │                             │
                    │prefix)                          │                             │
                    ├─────────────────────────────────┼─────────────────────────────┤
                    │form_name(original_form,         │                             │
                    │form_id, prefix)                 │                             │
                    ├─────────────────────────────────┼─────────────────────────────┤
                    │integral_name(original_form,     │                             │
                    │integral_type, ...)              │                             │
                    └─────────────────────────────────┴─────────────────────────────┘

       ffcx.naming.compute_signature(ufl_objects: List[Form  |  FiniteElementBase  |  Tuple[Expr,
       ndarray[Any, dtype[float64]]]], tag: str) -> str
              Compute the signature hash.

              Based on the UFL type of the objects and an additional optional ‘tag’.

       ffcx.naming.convert_element(element: FiniteElementBase) -> _ElementBase
              Convert and element to a FFCx element.

       ffcx.naming.dofmap_name(ufl_element, prefix)

       ffcx.naming.expression_name(expression, prefix)

       ffcx.naming.finite_element_name(ufl_element, prefix)

       ffcx.naming.form_name(original_form, form_id, prefix)

       ffcx.naming.integral_name(original_form, integral_type, form_id, subdomain_id, prefix)

FFCX.CODEGENERATION

       Functions

                        ┌───────────────────┬──────────────────────────────────┐
                        │get_include_path() │ Return  location  of  UFC header │
                        │                   │ files.                           │
                        ├───────────────────┼──────────────────────────────────┤
                        │get_signature()    │ Return   SHA-1   hash   of   the │
                        │                   │ contents of ufcx.h.              │
                        └───────────────────┴──────────────────────────────────┘

       ffcx.codegeneration.get_include_path()
              Return location of UFC header files.

       ffcx.codegeneration.get_signature()
              Return SHA-1 hash of the contents of ufcx.h.

              In this implementation, the value is computed on import.

FFCX.OPTIONS

       Functions

                  ┌────────────────────────────────┬──────────────────────────────────┐
                  │get_options([priority_options]) │ Return  (a  copy  of) the merged │
                  │                                │ option values for FFCX.          │
                  └────────────────────────────────┴──────────────────────────────────┘

       class ffcx.options.Any(*args, **kwargs)
              Bases: object

              Special type indicating an unconstrained type.

              • Any is compatible with every type.

              • Any assumed to have all methods.

              • All values assumed to be instances of Any.

              Note that all the above statements are true from the point of view of  static  type
              checkers. At runtime, Any should not be used with instance checks.

       class ffcx.options.Path(*args, **kwargs)
              Bases: PurePath

              PurePath subclass that can make system calls.

              Path  represents  a  filesystem path but unlike PurePath, also offers methods to do
              system calls on path objects. Depending on your system, instantiating a  Path  will
              return  either  a  PosixPath  or  a  WindowsPath object. You can also instantiate a
              PosixPath or WindowsPath directly, but cannot instantiate a WindowsPath on a  POSIX
              system or vice versa.

              Construct  a PurePath from one or several strings and or existing PurePath objects.
              The strings and path objects are combined so as  to  yield  a  canonicalized  path,
              which is incorporated into the new PurePath object.

              absolute()
                     Return  an  absolute  version of this path by prepending the current working
                     directory. No normalization or symlink resolution is performed.

                     Use resolve() to get the canonical path to a file.

              chmod(mode, *, follow_symlinks=True)
                     Change the permissions of the path, like os.chmod().

              classmethod cwd()
                     Return a new path pointing to the current working directory.

              exists(*, follow_symlinks=True)
                     Whether this path exists.

                     This method normally follows symlinks; to check whether  a  symlink  exists,
                     add the argument follow_symlinks=False.

              expanduser()
                     Return  a  new  path  with  expanded  ~ and ~user constructs (as returned by
                     os.path.expanduser)

              glob(pattern, *, case_sensitive=None)
                     Iterate over this subtree  and  yield  all  existing  files  (of  any  kind,
                     including directories) matching the given relative pattern.

              group()
                     Return the group name of the file gid.

              hardlink_to(target)
                     Make this path a hard link pointing to the same file as target.

                     Note the order of arguments (self, target) is the reverse of os.link’s.

              classmethod home()
                     Return  a  new  path  pointing  to the user’s home directory (as returned by
                     os.path.expanduser(‘~’)).

              is_block_device()
                     Whether this path is a block device.

              is_char_device()
                     Whether this path is a character device.

              is_dir()
                     Whether this path is a directory.

              is_fifo()
                     Whether this path is a FIFO.

              is_file()
                     Whether this path is a regular file (also  True  for  symlinks  pointing  to
                     regular files).

              is_junction()
                     Whether this path is a junction.

              is_mount()
                     Check if this path is a mount point

              is_socket()
                     Whether this path is a socket.

              is_symlink()
                     Whether this path is a symbolic link.

              iterdir()
                     Yield path objects of the directory contents.

                     The children are yielded in arbitrary order, and the special entries ‘.’ and
                     ‘..’ are not included.

              lchmod(mode)
                     Like chmod(), except  if  the  path  points  to  a  symlink,  the  symlink’s
                     permissions are changed, rather than its target’s.

              lstat()
                     Like  stat(),  except  if the path points to a symlink, the symlink’s status
                     information is returned, rather than its target’s.

              mkdir(mode=511, parents=False, exist_ok=False)
                     Create a new directory at this given path.

              open(mode='r', buffering=-1, encoding=None, errors=None, newline=None)
                     Open the file pointed by this path and return a file object, as the built-in
                     open() function does.

              owner()
                     Return the login name of the file owner.

              read_bytes()
                     Open the file in bytes mode, read it, and close the file.

              read_text(encoding=None, errors=None)
                     Open the file in text mode, read it, and close the file.

              readlink()
                     Return the path to which the symbolic link points.

              rename(target)
                     Rename this path to the target path.

                     The  target path may be absolute or relative. Relative paths are interpreted
                     relative to the current working directory, not the  directory  of  the  Path
                     object.

                     Returns the new Path instance pointing to the target path.

              replace(target)
                     Rename this path to the target path, overwriting if that path exists.

                     The  target path may be absolute or relative. Relative paths are interpreted
                     relative to the current working directory, not the  directory  of  the  Path
                     object.

                     Returns the new Path instance pointing to the target path.

              resolve(strict=False)
                     Make  the  path  absolute,  resolving  all  symlinks  on  the  way  and also
                     normalizing it.

              rglob(pattern, *, case_sensitive=None)
                     Recursively yield all existing files (of any  kind,  including  directories)
                     matching the given relative pattern, anywhere in this subtree.

              rmdir()
                     Remove this directory.  The directory must be empty.

              samefile(other_path)
                     Return  whether  other_path  is the same or not as this file (as returned by
                     os.path.samefile()).

              stat(*, follow_symlinks=True)
                     Return the result of the stat() system call on  this  path,  like  os.stat()
                     does.

              symlink_to(target, target_is_directory=False)
                     Make  this  path  a  symlink pointing to the target path.  Note the order of
                     arguments (link, target) is the reverse of os.symlink.

              touch(mode=438, exist_ok=True)
                     Create this file with the given access mode, if it doesn’t exist.

              unlink(missing_ok=False)
                     Remove this file or link.  If the path is a directory, use rmdir() instead.

              walk(top_down=True, on_error=None, follow_symlinks=False)
                     Walk the directory tree from this directory, similar to os.walk().

              write_bytes(data)
                     Open the file in bytes mode, write to it, and close the file.

              write_text(data, encoding=None, errors=None, newline=None)
                     Open the file in text mode, write to it, and close the file.

       ffcx.options.get_options(priority_options: dict | None = None) -> dict
              Return (a copy of) the merged option values for FFCX.

   Options
                 priority_options:
                        take priority over all other option values (see notes)

              returns
                     dict

              rtype  merged option values

              Notes

              This function sets the log level from the merged option values prior to returning.

              The ffcx_options.json files are cached on the first call. Subsequent calls to  this
              function use this cache.

              Priority ordering of options from highest to lowest is:

              • priority_options (API and command line options)

              • $PWD/ffcx_options.json (local options)

              • $XDG_CONFIG_HOME/ffcx/ffcx_options.json (user options)

              • FFCX_DEFAULT_OPTIONS in ffcx.options

              XDG_CONFIG_HOME is ~/.config/ if the environment variable is not set.

              Example ffcx_options.json file:
                 { “epsilon”: 1e-7 }

FFCX.IR.REPRESENTATION

       Compiler stage 2: Code representation.

       Module  computes intermediate representations of forms, elements and dofmaps. For each UFC
       function, we extract the data needed for code generation at a later stage.

       The representation should conform strictly to the naming and order of  functions  in  UFC.
       Thus,  for  code  generation  of  the function “foo”, one should only need to use the data
       stored in the intermediate representation under the key “foo”.

       Functions

                    ┌───────────────────────────┬──────────────────────────────────┐
                    │compute_ir(analysis,       │ Compute             intermediate │
                    │object_names, prefix, ...) │ representation.                  │
                    └───────────────────────────┴──────────────────────────────────┘

       Classes

                 ┌─────────────────────────────────┬──────────────────────────────────┐
                 │CustomElementIR(cell_type,       │ Create     new    instance    of │
                 │value_shape, ...)                │ CustomElementIR(cell_type,       │
                 │                                 │ value_shape,   wcoeffs,   x,  M, │
                 │                                 │ map_type,         sobolev_space, │
                 │                                 │ interpolation_nderivs,           │
                 │                                 │ discontinuous,                   │
                 │                                 │ highest_complete_degree,         │
                 │                                 │ highest_degree, polyset_type)    │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │DataIR(elements,        dofmaps, │ Create     new    instance    of │
                 │integrals, forms, ...)           │ DataIR(elements,        dofmaps, │
                 │                                 │ integrals, forms, expressions)   │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │DofMapIR(id,   name,  signature, │ Create    new    instance     of │
                 │...)                             │ DofMapIR(id,   name,  signature, │
                 │                                 │ num_global_support_dofs,         │
                 │                                 │ num_element_support_dofs,        │
                 │                                 │ entity_dofs,    num_entity_dofs, │
                 │                                 │ entity_closure_dofs,             │
                 │                                 │ num_entity_closure_dofs,         │
                 │                                 │ num_sub_dofmaps,    sub_dofmaps, │
                 │                                 │ block_size)                      │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │ElementIR(id,  name,  signature, │ Create     new    instance    of │
                 │cell_shape, ...)                 │ ElementIR(id,  name,  signature, │
                 │                                 │ cell_shape,                      │
                 │                                 │ topological_dimension,           │
                 │                                 │ geometric_dimension,             │
                 │                                 │ space_dimension,    value_shape, │
                 │                                 │ reference_value_shape,   degree, │
                 │                                 │ family,        num_sub_elements, │
                 │                                 │ block_size,        sub_elements, │
                 │                                 │ element_type,       entity_dofs, │
                 │                                 │ lagrange_variant,   dpc_variant, │
                 │                                 │ basix_family,        basix_cell, │
                 │                                 │ discontinuous, custom_element)   │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │ExpressionIR(name,               │ Create    new    instance     of │
                 │element_dimensions, ...)         │ ExpressionIR(name,               │
                 │                                 │ element_dimensions,     options, │
                 │                                 │ unique_tables,                   │
                 │                                 │ unique_table_types,   integrand, │
                 │                                 │ coefficient_numbering,           │
                 │                                 │ coefficient_offsets,             │
                 │                                 │ integral_type,       entitytype, │
                 │                                 │ tensor_shape,  expression_shape, │
                 │                                 │ original_constant_offsets,       │
                 │                                 │ points,       coefficient_names, │
                 │                                 │ constant_names,                  │
                 │                                 │ needs_facet_permutations,        │
                 │                                 │ function_spaces,                 │
                 │                                 │ name_from_uflfile,               │
                 │                                 │ original_coefficient_positions)  │
                 └─────────────────────────────────┴──────────────────────────────────┘

                 │FormIR(id,    name,   signature, │ Create    new    instance     of │
                 │rank, ...)                       │ FormIR(id,    name,   signature, │
                 │                                 │ rank,          num_coefficients, │
                 │                                 │ num_constants,                   │
                 │                                 │ name_from_uflfile,               │
                 │                                 │ function_spaces,                 │
                 │                                 │ original_coefficient_position,   │
                 │                                 │ coefficient_names,               │
                 │                                 │ constant_names, finite_elements, │
                 │                                 │ dofmaps,         integral_names, │
                 │                                 │ subdomain_ids)                   │
                 ├─────────────────────────────────┼──────────────────────────────────┤
                 │IntegralIR(integral_type,        │ Create     new    instance    of │
                 │subdomain_id, ...)               │ IntegralIR(integral_type,        │
                 │                                 │ subdomain_id,              rank, │
                 │                                 │ geometric_dimension,             │
                 │                                 │ topological_dimension,           │
                 │                                 │ entitytype,          num_facets, │
                 │                                 │ num_vertices,                    │
                 │                                 │ enabled_coefficients,            │
                 │                                 │ element_dimensions, element_ids, │
                 │                                 │ tensor_shape,                    │
                 │                                 │ coefficient_numbering,           │
                 │                                 │ coefficient_offsets,             │
                 │                                 │ original_constant_offsets,       │
                 │                                 │ options,             cell_shape, │
                 │                                 │ unique_tables,                   │
                 │                                 │ unique_table_types,   integrand, │
                 │                                 │ name,  needs_facet_permutations, │
                 │                                 │ coordinate_element)              │
                 └─────────────────────────────────┴──────────────────────────────────┘

       class  ffcx.ir.representation.CustomElementIR(cell_type,  value_shape,  wcoeffs,   x,   M,
       map_type,  sobolev_space,  interpolation_nderivs,  discontinuous, highest_complete_degree,
       highest_degree, polyset_type)
              Bases: NamedTuple

              Create new instance  of  CustomElementIR(cell_type,  value_shape,  wcoeffs,  x,  M,
              map_type,        sobolev_space,        interpolation_nderivs,        discontinuous,
              highest_complete_degree, highest_degree, polyset_type)

              M: List[List[ndarray[Any, dtype[float64]]]]
                     Alias for field number 4

              cell_type: CellType
                     Alias for field number 0

              discontinuous: bool
                     Alias for field number 8

              highest_complete_degree: int
                     Alias for field number 9

              highest_degree: int
                     Alias for field number 10

              interpolation_nderivs: int
                     Alias for field number 7

              map_type: MapType
                     Alias for field number 5

              polyset_type: PolysetType
                     Alias for field number 11

              sobolev_space: SobolevSpace
                     Alias for field number 6

              value_shape: Tuple[int, ...]
                     Alias for field number 1

              wcoeffs: ndarray[Any, dtype[float64]]
                     Alias for field number 2

              x: List[List[ndarray[Any, dtype[float64]]]]
                     Alias for field number 3

       class ffcx.ir.representation.DataIR(elements, dofmaps, integrals, forms, expressions)
              Bases: NamedTuple

              Create new instance of DataIR(elements, dofmaps, integrals, forms, expressions)

              dofmaps: List[DofMapIR]
                     Alias for field number 1

              elements: List[ElementIR]
                     Alias for field number 0

              expressions: List[ExpressionIR]
                     Alias for field number 4

              forms: List[FormIR]
                     Alias for field number 3

              integrals: List[IntegralIR]
                     Alias for field number 2

       class  ffcx.ir.representation.DofMapIR(id,   name,   signature,   num_global_support_dofs,
       num_element_support_dofs,      entity_dofs,      num_entity_dofs,     entity_closure_dofs,
       num_entity_closure_dofs, num_sub_dofmaps, sub_dofmaps, block_size)
              Bases: NamedTuple

              Create new  instance  of  DofMapIR(id,  name,  signature,  num_global_support_dofs,
              num_element_support_dofs,    entity_dofs,   num_entity_dofs,   entity_closure_dofs,
              num_entity_closure_dofs, num_sub_dofmaps, sub_dofmaps, block_size)

              block_size: int
                     Alias for field number 11

              entity_closure_dofs: List[List[List[int]]]
                     Alias for field number 7

              entity_dofs: List[List[List[int]]]
                     Alias for field number 5

              id: int
                     Alias for field number 0

              name: str
                     Alias for field number 1

              num_element_support_dofs: int
                     Alias for field number 4

              num_entity_closure_dofs: List[List[int]]
                     Alias for field number 8

              num_entity_dofs: List[List[int]]
                     Alias for field number 6

              num_global_support_dofs: int
                     Alias for field number 3

              num_sub_dofmaps: int
                     Alias for field number 9

              signature: str
                     Alias for field number 2

              sub_dofmaps: List[str]
                     Alias for field number 10

       class     ffcx.ir.representation.ElementIR(id,      name,      signature,      cell_shape,
       topological_dimension,       geometric_dimension,       space_dimension,      value_shape,
       reference_value_shape,  degree,  family,   num_sub_elements,   block_size,   sub_elements,
       element_type,   entity_dofs,   lagrange_variant,  dpc_variant,  basix_family,  basix_cell,
       discontinuous, custom_element)
              Bases: NamedTuple

              Create   new   instance   of    ElementIR(id,    name,    signature,    cell_shape,
              topological_dimension,     geometric_dimension,    space_dimension,    value_shape,
              reference_value_shape, degree, family, num_sub_elements, block_size,  sub_elements,
              element_type, entity_dofs, lagrange_variant, dpc_variant, basix_family, basix_cell,
              discontinuous, custom_element)

              basix_cell: CellType
                     Alias for field number 19

              basix_family: ElementFamily
                     Alias for field number 18

              block_size: int
                     Alias for field number 12

              cell_shape: str
                     Alias for field number 3

              custom_element: CustomElementIR
                     Alias for field number 21

              degree: int
                     Alias for field number 9

              discontinuous: bool
                     Alias for field number 20

              dpc_variant: DPCVariant
                     Alias for field number 17

              element_type: str
                     Alias for field number 14

              entity_dofs: List[List[List[int]]]
                     Alias for field number 15

              family: str
                     Alias for field number 10

              geometric_dimension: int
                     Alias for field number 5

              id: int
                     Alias for field number 0

              lagrange_variant: LagrangeVariant
                     Alias for field number 16

              name: str
                     Alias for field number 1

              num_sub_elements: int
                     Alias for field number 11

              reference_value_shape: Tuple[int, ...]
                     Alias for field number 8

              signature: str
                     Alias for field number 2

              space_dimension: int
                     Alias for field number 6

              sub_elements: List[str]
                     Alias for field number 13

              topological_dimension: int
                     Alias for field number 4

              value_shape: Tuple[int, ...]
                     Alias for field number 7

       class     ffcx.ir.representation.ExpressionIR(name,      element_dimensions,      options,
       unique_tables,  unique_table_types, integrand, coefficient_numbering, coefficient_offsets,
       integral_type,  entitytype,  tensor_shape,  expression_shape,   original_constant_offsets,
       points,   coefficient_names,  constant_names,  needs_facet_permutations,  function_spaces,
       name_from_uflfile, original_coefficient_positions)
              Bases: NamedTuple

              Create   new   instance   of   ExpressionIR(name,   element_dimensions,    options,
              unique_tables,      unique_table_types,      integrand,      coefficient_numbering,
              coefficient_offsets,  integral_type,  entitytype,  tensor_shape,  expression_shape,
              original_constant_offsets,      points,      coefficient_names,     constant_names,
              needs_facet_permutations,            function_spaces,            name_from_uflfile,
              original_coefficient_positions)

              coefficient_names: List[str]
                     Alias for field number 14

              coefficient_numbering: Dict[Coefficient, int]
                     Alias for field number 6

              coefficient_offsets: Dict[Coefficient, int]
                     Alias for field number 7

              constant_names: List[str]
                     Alias for field number 15

              element_dimensions: Dict[FiniteElementBase, int]
                     Alias for field number 1

              entitytype: str
                     Alias for field number 9

              expression_shape: List[int]
                     Alias for field number 11

              function_spaces: Dict[str, Tuple[str, str, str, int, CellType, LagrangeVariant]]
                     Alias for field number 17

              integral_type: str
                     Alias for field number 8

              integrand: Dict[QuadratureRule, dict]
                     Alias for field number 5

              name: str
                     Alias for field number 0

              name_from_uflfile: str
                     Alias for field number 18

              needs_facet_permutations: bool
                     Alias for field number 16

              options: dict
                     Alias for field number 2

              original_coefficient_positions: List[int]
                     Alias for field number 19

              original_constant_offsets: Dict[Constant, int]
                     Alias for field number 12

              points: ndarray[Any, dtype[float64]]
                     Alias for field number 13

              tensor_shape: List[int]
                     Alias for field number 10

              unique_table_types: Dict[str, str]
                     Alias for field number 4

              unique_tables: Dict[str, ndarray[Any, dtype[float64]]]
                     Alias for field number 3

       class   ffcx.ir.representation.FormIR(id,   name,   signature,   rank,   num_coefficients,
       num_constants,    name_from_uflfile,    function_spaces,    original_coefficient_position,
       coefficient_names,     constant_names,     finite_elements,    dofmaps,    integral_names,
       subdomain_ids)
              Bases: NamedTuple

              Create  new  instance  of  FormIR(id,  name,  signature,  rank,   num_coefficients,
              num_constants,  name_from_uflfile,  function_spaces, original_coefficient_position,
              coefficient_names,  constant_names,   finite_elements,   dofmaps,   integral_names,
              subdomain_ids)

              coefficient_names: List[str]
                     Alias for field number 9

              constant_names: List[str]
                     Alias for field number 10

              dofmaps: List[str]
                     Alias for field number 12

              finite_elements: List[str]
                     Alias for field number 11

              function_spaces: Dict[str, Tuple[str, str, str, int, CellType, LagrangeVariant]]
                     Alias for field number 7

              id: int
                     Alias for field number 0

              integral_names: Dict[str, List[str]]
                     Alias for field number 13

              name: str
                     Alias for field number 1

              name_from_uflfile: str
                     Alias for field number 6

              num_coefficients: int
                     Alias for field number 4

              num_constants: int
                     Alias for field number 5

              original_coefficient_position: List[int]
                     Alias for field number 8

              rank: int
                     Alias for field number 3

              signature: str
                     Alias for field number 2

              subdomain_ids: Dict[str, List[int]]
                     Alias for field number 14

       class   ffcx.ir.representation.Integral(integrand,  integral_type,  domain,  subdomain_id,
       metadata, subdomain_data)
              Bases: object

              An integral over a single domain.

              Initialise.

              integral_type()
                     Return the domain type of this integral.

              integrand()
                     Return the integrand expression, which is an Expr instance.

              metadata()
                     Return the compiler metadata this integral has been annotated with.

              reconstruct(integrand=None,  integral_type=None,  domain=None,   subdomain_id=None,
              metadata=None, subdomain_data=None)
                     Construct  a  new  Integral  object  with  some properties replaced with new
                     values.

                     Example

                     <a = Integral instance> b = a.reconstruct(expand_compounds(a.integrand())) c
                     = a.reconstruct(metadata={‘quadrature_degree’:2})

              subdomain_data()
                     Return the domain data of this integral.

              subdomain_id()
                     Return the subdomain id of this integral.

              ufl_domain()
                     Return the integration domain of this integral.

       class       ffcx.ir.representation.IntegralIR(integral_type,      subdomain_id,      rank,
       geometric_dimension,   topological_dimension,   entitytype,   num_facets,    num_vertices,
       enabled_coefficients,         element_dimensions,        element_ids,        tensor_shape,
       coefficient_numbering,    coefficient_offsets,     original_constant_offsets,     options,
       cell_shape,  unique_tables, unique_table_types, integrand, name, needs_facet_permutations,
       coordinate_element)
              Bases: NamedTuple

              Create   new   instance   of    IntegralIR(integral_type,    subdomain_id,    rank,
              geometric_dimension,  topological_dimension,  entitytype, num_facets, num_vertices,
              enabled_coefficients,      element_dimensions,      element_ids,      tensor_shape,
              coefficient_numbering,   coefficient_offsets,  original_constant_offsets,  options,
              cell_shape,      unique_tables,      unique_table_types,      integrand,      name,
              needs_facet_permutations, coordinate_element)

              cell_shape: str
                     Alias for field number 16

              coefficient_numbering: Dict[Coefficient, int]
                     Alias for field number 12

              coefficient_offsets: Dict[Coefficient, int]
                     Alias for field number 13

              coordinate_element: str
                     Alias for field number 22

              element_dimensions: Dict[FiniteElementBase, int]
                     Alias for field number 9

              element_ids: Dict[FiniteElementBase, int]
                     Alias for field number 10

              enabled_coefficients: List[bool]
                     Alias for field number 8

              entitytype: str
                     Alias for field number 5

              geometric_dimension: int
                     Alias for field number 3

              integral_type: str
                     Alias for field number 0

              integrand: Dict[QuadratureRule, dict]
                     Alias for field number 19

              name: str
                     Alias for field number 20

              needs_facet_permutations: bool
                     Alias for field number 21

              num_facets: int
                     Alias for field number 6

              num_vertices: int
                     Alias for field number 7

              options: dict
                     Alias for field number 15

              original_constant_offsets: Dict[Constant, int]
                     Alias for field number 14

              rank: int
                     Alias for field number 2

              subdomain_id: str | Tuple[int, ...] | int
                     Alias for field number 1

              tensor_shape: List[int]
                     Alias for field number 11

              topological_dimension: int
                     Alias for field number 4

              unique_table_types: Dict[str, str]
                     Alias for field number 18

              unique_tables: Dict[str, ndarray[Any, dtype[float64]]]
                     Alias for field number 17

       class ffcx.ir.representation.QuadratureRule(points, weights)
              Bases: object

              id()   Return unique deterministic identifier.

                     NOTE:
                        This  identifier is used to provide unique names to tables and symbols in
                        generated code.

       class    ffcx.ir.representation.UFLData(form_data,    unique_elements,    element_numbers,
       unique_coordinate_elements, expressions)
              Bases: NamedTuple

              Create   new   instance  of  UFLData(form_data,  unique_elements,  element_numbers,
              unique_coordinate_elements, expressions)

              element_numbers: Dict[_ElementBase, int]
                     Alias for field number 2

              expressions: List[Tuple[Expr, ndarray[Any, dtype[float64]], Expr]]
                     Alias for field number 4

              form_data: Tuple[FormData, ...]
                     Alias for field number 0

              unique_coordinate_elements: List[_ElementBase]
                     Alias for field number 3

              unique_elements: List[_ElementBase]
                     Alias for field number 1

       ffcx.ir.representation.compute_integral_ir(cell,  integral_type,  entitytype,  integrands,
       argument_shape, p, visualise)

       ffcx.ir.representation.compute_ir(analysis:   UFLData,   object_names,   prefix,  options,
       visualise)
              Compute intermediate representation.

       ffcx.ir.representation.convert_element(element: FiniteElementBase) -> _ElementBase
              Convert and element to a FFCx element.

       ffcx.ir.representation.create_quadrature_points_and_weights(integral_type,  cell,  degree,
       rule, elements)
              Create quadrature rule and return points and weights.

       ffcx.ir.representation.sorted_expr_sum(seq)
              Sorted expr sum.

FFCX.IR.REPRESENTATIONUTILS

       Utility functions for some code shared between representations.

       Functions

            ┌───────────────────────────────────────────┬──────────────────────────────────┐
            │create_quadrature_points_and_weights(...)  │ Create   quadrature   rule   and │
            │                                           │ return points and weights.       │
            └───────────────────────────────────────────┴──────────────────────────────────┘

            │integral_type_to_entity_dim(integral_type, │ Given integral_type  and  domain │
            │tdim)                                      │ tdim,  return  the  tdim  of the │
            │                                           │ integration entity.              │
            ├───────────────────────────────────────────┼──────────────────────────────────┤
            │map_integral_points(points, integral_type, │ Map points from reference entity │
            │...)                                       │ to its parent reference cell.    │
            └───────────────────────────────────────────┴──────────────────────────────────┘

       Classes

                                 ┌────────────────────────────────┬───┐
                                 │QuadratureRule(points, weights) │   │
                                 └────────────────────────────────┴───┘

       class ffcx.ir.representationutils.QuadratureRule(points, weights)
              Bases: object

              id()   Return unique deterministic identifier.

                     NOTE:
                        This identifier is used to provide unique names to tables and symbols  in
                        generated code.

       ffcx.ir.representationutils.create_quadrature(cellname:   str,  degree:  int,  rule:  str,
       elements:  List[_ElementBase])   ->   Tuple[ndarray[Any,   dtype[float64]],   ndarray[Any,
       dtype[float64]]]
              Create a quadrature rule.

       ffcx.ir.representationutils.create_quadrature_points_and_weights(integral_type,      cell,
       degree, rule, elements)
              Create quadrature rule and return points and weights.

       ffcx.ir.representationutils.integral_type_to_entity_dim(integral_type, tdim)
              Given integral_type and domain tdim, return the tdim of the integration entity.

       ffcx.ir.representationutils.map_facet_points(points: ndarray[Any, dtype[float64]],  facet:
       int, cellname: str) -> ndarray[Any, dtype[float64]]
              Map points from a reference facet to a physical facet.

       ffcx.ir.representationutils.map_integral_points(points, integral_type, cell, entity)
              Map points from reference entity to its parent reference cell.

       ffcx.ir.representationutils.reference_cell_vertices(cellname:    str)    ->   ndarray[Any,
       dtype[float64]]
              Get the vertices of a reference cell.

       • IndexModule IndexSearch Page

AUTHOR

       FEniCS Project

COPYRIGHT

       2024, FEniCS Project