Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       heevd - {he,sy}evd: eig, divide and conquer

SYNOPSIS

   Functions
       subroutine cheevd (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork,
           info)
            CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for HE matrices
       subroutine dsyevd (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
            DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for SY matrices
       subroutine ssyevd (jobz, uplo, n, a, lda, w, work, lwork, iwork, liwork, info)
            SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for SY matrices
       subroutine zheevd (jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork,
           info)
            ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for HE matrices

Detailed Description

Function Documentation

   subroutine cheevd (character jobz, character uplo, integer n, complex, dimension( lda, * ) a,
       integer lda, real, dimension( * ) w, complex, dimension( * ) work, integer lwork, real,
       dimension( * ) rwork, integer lrwork, integer, dimension( * ) iwork, integer liwork,
       integer info)
        CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       HE matrices

       Purpose:

            CHEEVD computes all eigenvalues and, optionally, eigenvectors of a
            complex Hermitian matrix A.  If eigenvectors are desired, it uses a
            divide and conquer algorithm.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX array, dimension (LDA, N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.
                     If N <= 1,                LWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
                     If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal sizes of the WORK, RWORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           RWORK

                     RWORK is REAL array,
                                                    dimension (LRWORK)
                     On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

           LRWORK

                     LRWORK is INTEGER
                     The dimension of the array RWORK.
                     If N <= 1,                LRWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
                     If JOBZ  = 'V' and N > 1, LRWORK must be at least
                                    1 + 5*N + 2*N**2.

                     If LRWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           IWORK

                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

           LIWORK

                     LIWORK is INTEGER
                     The dimension of the array IWORK.
                     If N <= 1,                LIWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                     If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                           to converge; i off-diagonal elements of an intermediate
                           tridiagonal form did not converge to zero;
                           if INFO = i and JOBZ = 'V', then the algorithm failed
                           to compute an eigenvalue while working on the submatrix
                           lying in rows and columns INFO/(N+1) through
                           mod(INFO,N+1).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           Modified description of INFO. Sven, 16 Feb 05.

       Contributors:
           Jeff Rutter, Computer Science Division, University of California at Berkeley, USA

   subroutine dsyevd (character jobz, character uplo, integer n, double precision, dimension(
       lda, * ) a, integer lda, double precision, dimension( * ) w, double precision, dimension(
       * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, integer info)
        DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       SY matrices

       Purpose:

            DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
            real symmetric matrix A. If eigenvectors are desired, it uses a
            divide and conquer algorithm.

            Because of large use of BLAS of level 3, DSYEVD needs N**2 more
            workspace than DSYEVX.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA, N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is DOUBLE PRECISION array,
                                                    dimension (LWORK)
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If N <= 1,               LWORK must be at least 1.
                     If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
                     If JOBZ = 'V' and N > 1, LWORK must be at least
                                                           1 + 6*N + 2*N**2.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal sizes of the WORK and IWORK
                     arrays, returns these values as the first entries of the WORK
                     and IWORK arrays, and no error message related to LWORK or
                     LIWORK is issued by XERBLA.

           IWORK

                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

           LIWORK

                     LIWORK is INTEGER
                     The dimension of the array IWORK.
                     If N <= 1,                LIWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                     If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK and IWORK arrays, and no error message related to
                     LWORK or LIWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                           to converge; i off-diagonal elements of an intermediate
                           tridiagonal form did not converge to zero;
                           if INFO = i and JOBZ = 'V', then the algorithm failed
                           to compute an eigenvalue while working on the submatrix
                           lying in rows and columns INFO/(N+1) through
                           mod(INFO,N+1).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
            Modified by Francoise Tisseur, University of Tennessee
            Modified description of INFO. Sven, 16 Feb 05.

   subroutine ssyevd (character jobz, character uplo, integer n, real, dimension( lda, * ) a,
       integer lda, real, dimension( * ) w, real, dimension( * ) work, integer lwork, integer,
       dimension( * ) iwork, integer liwork, integer info)
        SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       SY matrices

       Purpose:

            SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
            real symmetric matrix A. If eigenvectors are desired, it uses a
            divide and conquer algorithm.

            Because of large use of BLAS of level 3, SSYEVD needs N**2 more
            workspace than SSYEVX.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is REAL array, dimension (LDA, N)
                     On entry, the symmetric matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is REAL array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is REAL array,
                                                    dimension (LWORK)
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If N <= 1,               LWORK must be at least 1.
                     If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
                     If JOBZ = 'V' and N > 1, LWORK must be at least
                                                           1 + 6*N + 2*N**2.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal sizes of the WORK and IWORK
                     arrays, returns these values as the first entries of the WORK
                     and IWORK arrays, and no error message related to LWORK or
                     LIWORK is issued by XERBLA.

           IWORK

                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

           LIWORK

                     LIWORK is INTEGER
                     The dimension of the array IWORK.
                     If N <= 1,                LIWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                     If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK and IWORK arrays, and no error message related to
                     LWORK or LIWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                           to converge; i off-diagonal elements of an intermediate
                           tridiagonal form did not converge to zero;
                           if INFO = i and JOBZ = 'V', then the algorithm failed
                           to compute an eigenvalue while working on the submatrix
                           lying in rows and columns INFO/(N+1) through
                           mod(INFO,N+1).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Jeff Rutter, Computer Science Division, University of California at Berkeley, USA
            Modified by Francoise Tisseur, University of Tennessee
            Modified description of INFO. Sven, 16 Feb 05.

   subroutine zheevd (character jobz, character uplo, integer n, complex*16, dimension( lda, * )
       a, integer lda, double precision, dimension( * ) w, complex*16, dimension( * ) work,
       integer lwork, double precision, dimension( * ) rwork, integer lrwork, integer, dimension(
       * ) iwork, integer liwork, integer info)
        ZHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for
       HE matrices

       Purpose:

            ZHEEVD computes all eigenvalues and, optionally, eigenvectors of a
            complex Hermitian matrix A.  If eigenvectors are desired, it uses a
            divide and conquer algorithm.

       Parameters
           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA, N)
                     On entry, the Hermitian matrix A.  If UPLO = 'U', the
                     leading N-by-N upper triangular part of A contains the
                     upper triangular part of the matrix A.  If UPLO = 'L',
                     the leading N-by-N lower triangular part of A contains
                     the lower triangular part of the matrix A.
                     On exit, if JOBZ = 'V', then if INFO = 0, A contains the
                     orthonormal eigenvectors of the matrix A.
                     If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
                     or the upper triangle (if UPLO='U') of A, including the
                     diagonal, is destroyed.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     If INFO = 0, the eigenvalues in ascending order.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The length of the array WORK.
                     If N <= 1,                LWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LWORK must be at least N + 1.
                     If JOBZ  = 'V' and N > 1, LWORK must be at least 2*N + N**2.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal sizes of the WORK, RWORK and
                     IWORK arrays, returns these values as the first entries of
                     the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           RWORK

                     RWORK is DOUBLE PRECISION array,
                                                    dimension (LRWORK)
                     On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.

           LRWORK

                     LRWORK is INTEGER
                     The dimension of the array RWORK.
                     If N <= 1,                LRWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LRWORK must be at least N.
                     If JOBZ  = 'V' and N > 1, LRWORK must be at least
                                    1 + 5*N + 2*N**2.

                     If LRWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           IWORK

                     IWORK is INTEGER array, dimension (MAX(1,LIWORK))
                     On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.

           LIWORK

                     LIWORK is INTEGER
                     The dimension of the array IWORK.
                     If N <= 1,                LIWORK must be at least 1.
                     If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
                     If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

                     If LIWORK = -1, then a workspace query is assumed; the
                     routine only calculates the optimal sizes of the WORK, RWORK
                     and IWORK arrays, returns these values as the first entries
                     of the WORK, RWORK and IWORK arrays, and no error message
                     related to LWORK or LRWORK or LIWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
                           to converge; i off-diagonal elements of an intermediate
                           tridiagonal form did not converge to zero;
                           if INFO = i and JOBZ = 'V', then the algorithm failed
                           to compute an eigenvalue while working on the submatrix
                           lying in rows and columns INFO/(N+1) through
                           mod(INFO,N+1).

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:
           Modified description of INFO. Sven, 16 Feb 05.

       Contributors:
           Jeff Rutter, Computer Science Division, University of California at Berkeley, USA

Author

       Generated automatically by Doxygen for LAPACK from the source code.