Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       getc2 - getc2: triangular factor, with complete pivoting

SYNOPSIS

   Functions
       subroutine cgetc2 (n, a, lda, ipiv, jpiv, info)
           CGETC2 computes the LU factorization with complete pivoting of the general n-by-n
           matrix.
       subroutine dgetc2 (n, a, lda, ipiv, jpiv, info)
           DGETC2 computes the LU factorization with complete pivoting of the general n-by-n
           matrix.
       subroutine sgetc2 (n, a, lda, ipiv, jpiv, info)
           SGETC2 computes the LU factorization with complete pivoting of the general n-by-n
           matrix.
       subroutine zgetc2 (n, a, lda, ipiv, jpiv, info)
           ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n
           matrix.

Detailed Description

Function Documentation

   subroutine cgetc2 (integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension(
       * ) ipiv, integer, dimension( * ) jpiv, integer info)
       CGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

       Purpose:

            CGETC2 computes an LU factorization, using complete pivoting, of the
            n-by-n matrix A. The factorization has the form A = P * L * U * Q,
            where P and Q are permutation matrices, L is lower triangular with
            unit diagonal elements and U is upper triangular.

            This is a level 1 BLAS version of the algorithm.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is COMPLEX array, dimension (LDA, N)
                     On entry, the n-by-n matrix to be factored.
                     On exit, the factors L and U from the factorization
                     A = P*L*U*Q; the unit diagonal elements of L are not stored.
                     If U(k, k) appears to be less than SMIN, U(k, k) is given the
                     value of SMIN, giving a nonsingular perturbed system.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1, N).

           IPIV

                     IPIV is INTEGER array, dimension (N).
                     The pivot indices; for 1 <= i <= N, row i of the
                     matrix has been interchanged with row IPIV(i).

           JPIV

                     JPIV is INTEGER array, dimension (N).
                     The pivot indices; for 1 <= j <= N, column j of the
                     matrix has been interchanged with column JPIV(j).

           INFO

                     INFO is INTEGER
                      = 0: successful exit
                      > 0: if INFO = k, U(k, k) is likely to produce overflow if
                           one tries to solve for x in Ax = b. So U is perturbed
                           to avoid the overflow.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901
           87 Umea, Sweden.

   subroutine dgetc2 (integer n, double precision, dimension( lda, * ) a, integer lda, integer,
       dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)
       DGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

       Purpose:

            DGETC2 computes an LU factorization with complete pivoting of the
            n-by-n matrix A. The factorization has the form A = P * L * U * Q,
            where P and Q are permutation matrices, L is lower triangular with
            unit diagonal elements and U is upper triangular.

            This is the Level 2 BLAS algorithm.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA, N)
                     On entry, the n-by-n matrix A to be factored.
                     On exit, the factors L and U from the factorization
                     A = P*L*U*Q; the unit diagonal elements of L are not stored.
                     If U(k, k) appears to be less than SMIN, U(k, k) is given the
                     value of SMIN, i.e., giving a nonsingular perturbed system.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension(N).
                     The pivot indices; for 1 <= i <= N, row i of the
                     matrix has been interchanged with row IPIV(i).

           JPIV

                     JPIV is INTEGER array, dimension(N).
                     The pivot indices; for 1 <= j <= N, column j of the
                     matrix has been interchanged with column JPIV(j).

           INFO

                     INFO is INTEGER
                      = 0: successful exit
                      > 0: if INFO = k, U(k, k) is likely to produce overflow if
                           we try to solve for x in Ax = b. So U is perturbed to
                           avoid the overflow.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901
           87 Umea, Sweden.

   subroutine sgetc2 (integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( *
       ) ipiv, integer, dimension( * ) jpiv, integer info)
       SGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

       Purpose:

            SGETC2 computes an LU factorization with complete pivoting of the
            n-by-n matrix A. The factorization has the form A = P * L * U * Q,
            where P and Q are permutation matrices, L is lower triangular with
            unit diagonal elements and U is upper triangular.

            This is the Level 2 BLAS algorithm.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is REAL array, dimension (LDA, N)
                     On entry, the n-by-n matrix A to be factored.
                     On exit, the factors L and U from the factorization
                     A = P*L*U*Q; the unit diagonal elements of L are not stored.
                     If U(k, k) appears to be less than SMIN, U(k, k) is given the
                     value of SMIN, i.e., giving a nonsingular perturbed system.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           IPIV

                     IPIV is INTEGER array, dimension(N).
                     The pivot indices; for 1 <= i <= N, row i of the
                     matrix has been interchanged with row IPIV(i).

           JPIV

                     JPIV is INTEGER array, dimension(N).
                     The pivot indices; for 1 <= j <= N, column j of the
                     matrix has been interchanged with column JPIV(j).

           INFO

                     INFO is INTEGER
                      = 0: successful exit
                      > 0: if INFO = k, U(k, k) is likely to produce overflow if
                           we try to solve for x in Ax = b. So U is perturbed to
                           avoid the overflow.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901
           87 Umea, Sweden.

   subroutine zgetc2 (integer n, complex*16, dimension( lda, * ) a, integer lda, integer,
       dimension( * ) ipiv, integer, dimension( * ) jpiv, integer info)
       ZGETC2 computes the LU factorization with complete pivoting of the general n-by-n matrix.

       Purpose:

            ZGETC2 computes an LU factorization, using complete pivoting, of the
            n-by-n matrix A. The factorization has the form A = P * L * U * Q,
            where P and Q are permutation matrices, L is lower triangular with
            unit diagonal elements and U is upper triangular.

            This is a level 1 BLAS version of the algorithm.

       Parameters
           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA, N)
                     On entry, the n-by-n matrix to be factored.
                     On exit, the factors L and U from the factorization
                     A = P*L*U*Q; the unit diagonal elements of L are not stored.
                     If U(k, k) appears to be less than SMIN, U(k, k) is given the
                     value of SMIN, giving a nonsingular perturbed system.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1, N).

           IPIV

                     IPIV is INTEGER array, dimension (N).
                     The pivot indices; for 1 <= i <= N, row i of the
                     matrix has been interchanged with row IPIV(i).

           JPIV

                     JPIV is INTEGER array, dimension (N).
                     The pivot indices; for 1 <= j <= N, column j of the
                     matrix has been interchanged with column JPIV(j).

           INFO

                     INFO is INTEGER
                      = 0: successful exit
                      > 0: if INFO = k, U(k, k) is likely to produce overflow if
                           one tries to solve for x in Ax = b. So U is perturbed
                           to avoid the overflow.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901
           87 Umea, Sweden.

Author

       Generated automatically by Doxygen for LAPACK from the source code.