Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       laqr4 - laqr4: eig of Hessenberg, step in hseqr

SYNOPSIS

   Functions
       subroutine claqr4 (wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
           info)
           CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices
           from the Schur decomposition.
       subroutine dlaqr4 (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
           lwork, info)
           DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices
           from the Schur decomposition.
       subroutine slaqr4 (wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work,
           lwork, info)
           SLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices
           from the Schur decomposition.
       subroutine zlaqr4 (wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork,
           info)
           ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices
           from the Schur decomposition.

Detailed Description

Function Documentation

   subroutine claqr4 (logical wantt, logical wantz, integer n, integer ilo, integer ihi, complex,
       dimension( ldh, * ) h, integer ldh, complex, dimension( * ) w, integer iloz, integer ihiz,
       complex, dimension( ldz, * ) z, integer ldz, complex, dimension( * ) work, integer lwork,
       integer info)
       CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from
       the Schur decomposition.

       Purpose:

               CLAQR4 implements one level of recursion for CLAQR0.
               It is a complete implementation of the small bulge multi-shift
               QR algorithm.  It may be called by CLAQR0 and, for large enough
               deflation window size, it may be called by CLAQR3.  This
               subroutine is identical to CLAQR0 except that it calls CLAQR2
               instead of CLAQR3.

               CLAQR4 computes the eigenvalues of a Hessenberg matrix H
               and, optionally, the matrices T and Z from the Schur decomposition
               H = Z T Z**H, where T is an upper triangular matrix (the
               Schur form), and Z is the unitary matrix of Schur vectors.

               Optionally Z may be postmultiplied into an input unitary
               matrix Q so that this routine can give the Schur factorization
               of a matrix A which has been reduced to the Hessenberg form H
               by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.

       Parameters
           WANTT

                     WANTT is LOGICAL
                     = .TRUE. : the full Schur form T is required;
                     = .FALSE.: only eigenvalues are required.

           WANTZ

                     WANTZ is LOGICAL
                     = .TRUE. : the matrix of Schur vectors Z is required;
                     = .FALSE.: Schur vectors are not required.

           N

                     N is INTEGER
                      The order of the matrix H.  N >= 0.

           ILO

                     ILO is INTEGER

           IHI

                     IHI is INTEGER
                      It is assumed that H is already upper triangular in rows
                      and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
                      H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                      previous call to CGEBAL, and then passed to CGEHRD when the
                      matrix output by CGEBAL is reduced to Hessenberg form.
                      Otherwise, ILO and IHI should be set to 1 and N,
                      respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
                      If N = 0, then ILO = 1 and IHI = 0.

           H

                     H is COMPLEX array, dimension (LDH,N)
                      On entry, the upper Hessenberg matrix H.
                      On exit, if INFO = 0 and WANTT is .TRUE., then H
                      contains the upper triangular matrix T from the Schur
                      decomposition (the Schur form). If INFO = 0 and WANT is
                      .FALSE., then the contents of H are unspecified on exit.
                      (The output value of H when INFO > 0 is given under the
                      description of INFO below.)

                      This subroutine may explicitly set H(i,j) = 0 for i > j and
                      j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.

           LDH

                     LDH is INTEGER
                      The leading dimension of the array H. LDH >= max(1,N).

           W

                     W is COMPLEX array, dimension (N)
                      The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
                      in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
                      stored in the same order as on the diagonal of the Schur
                      form returned in H, with W(i) = H(i,i).

           ILOZ

                     ILOZ is INTEGER

           IHIZ

                     IHIZ is INTEGER
                      Specify the rows of Z to which transformations must be
                      applied if WANTZ is .TRUE..
                      1 <= ILOZ <= ILO; IHI <= IHIZ <= N.

           Z

                     Z is COMPLEX array, dimension (LDZ,IHI)
                      If WANTZ is .FALSE., then Z is not referenced.
                      If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                      replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                      orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
                      (The output value of Z when INFO > 0 is given under
                      the description of INFO below.)

           LDZ

                     LDZ is INTEGER
                      The leading dimension of the array Z.  if WANTZ is .TRUE.
                      then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.

           WORK

                     WORK is COMPLEX array, dimension LWORK
                      On exit, if LWORK = -1, WORK(1) returns an estimate of
                      the optimal value for LWORK.

           LWORK

                     LWORK is INTEGER
                      The dimension of the array WORK.  LWORK >= max(1,N)
                      is sufficient, but LWORK typically as large as 6*N may
                      be required for optimal performance.  A workspace query
                      to determine the optimal workspace size is recommended.

                      If LWORK = -1, then CLAQR4 does a workspace query.
                      In this case, CLAQR4 checks the input parameters and
                      estimates the optimal workspace size for the given
                      values of N, ILO and IHI.  The estimate is returned
                      in WORK(1).  No error message related to LWORK is
                      issued by XERBLA.  Neither H nor Z are accessed.

           INFO

                     INFO is INTEGER
                        = 0:  successful exit
                        > 0:  if INFO = i, CLAQR4 failed to compute all of
                           the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                           and WI contain those eigenvalues which have been
                           successfully computed.  (Failures are rare.)

                           If INFO > 0 and WANT is .FALSE., then on exit,
                           the remaining unconverged eigenvalues are the eigen-
                           values of the upper Hessenberg matrix rows and
                           columns ILO through INFO of the final, output
                           value of H.

                           If INFO > 0 and WANTT is .TRUE., then on exit

                      (*)  (initial value of H)*U  = U*(final value of H)

                           where U is a unitary matrix.  The final
                           value of  H is upper Hessenberg and triangular in
                           rows and columns INFO+1 through IHI.

                           If INFO > 0 and WANTZ is .TRUE., then on exit

                             (final value of Z(ILO:IHI,ILOZ:IHIZ)
                              =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U

                           where U is the unitary matrix in (*) (regard-
                           less of the value of WANTT.)

                           If INFO > 0 and WANTZ is .FALSE., then Z is not
                           accessed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

       References:

             K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
             Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
             Performance, SIAM Journal of Matrix Analysis, volume 23, pages
             929--947, 2002.

            K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive
           Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

   subroutine dlaqr4 (logical wantt, logical wantz, integer n, integer ilo, integer ihi, double
       precision, dimension( ldh, * ) h, integer ldh, double precision, dimension( * ) wr, double
       precision, dimension( * ) wi, integer iloz, integer ihiz, double precision, dimension(
       ldz, * ) z, integer ldz, double precision, dimension( * ) work, integer lwork, integer
       info)
       DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from
       the Schur decomposition.

       Purpose:

               DLAQR4 implements one level of recursion for DLAQR0.
               It is a complete implementation of the small bulge multi-shift
               QR algorithm.  It may be called by DLAQR0 and, for large enough
               deflation window size, it may be called by DLAQR3.  This
               subroutine is identical to DLAQR0 except that it calls DLAQR2
               instead of DLAQR3.

               DLAQR4 computes the eigenvalues of a Hessenberg matrix H
               and, optionally, the matrices T and Z from the Schur decomposition
               H = Z T Z**T, where T is an upper quasi-triangular matrix (the
               Schur form), and Z is the orthogonal matrix of Schur vectors.

               Optionally Z may be postmultiplied into an input orthogonal
               matrix Q so that this routine can give the Schur factorization
               of a matrix A which has been reduced to the Hessenberg form H
               by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.

       Parameters
           WANTT

                     WANTT is LOGICAL
                     = .TRUE. : the full Schur form T is required;
                     = .FALSE.: only eigenvalues are required.

           WANTZ

                     WANTZ is LOGICAL
                     = .TRUE. : the matrix of Schur vectors Z is required;
                     = .FALSE.: Schur vectors are not required.

           N

                     N is INTEGER
                      The order of the matrix H.  N >= 0.

           ILO

                     ILO is INTEGER

           IHI

                     IHI is INTEGER
                      It is assumed that H is already upper triangular in rows
                      and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
                      H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                      previous call to DGEBAL, and then passed to DGEHRD when the
                      matrix output by DGEBAL is reduced to Hessenberg form.
                      Otherwise, ILO and IHI should be set to 1 and N,
                      respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
                      If N = 0, then ILO = 1 and IHI = 0.

           H

                     H is DOUBLE PRECISION array, dimension (LDH,N)
                      On entry, the upper Hessenberg matrix H.
                      On exit, if INFO = 0 and WANTT is .TRUE., then H contains
                      the upper quasi-triangular matrix T from the Schur
                      decomposition (the Schur form); 2-by-2 diagonal blocks
                      (corresponding to complex conjugate pairs of eigenvalues)
                      are returned in standard form, with H(i,i) = H(i+1,i+1)
                      and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
                      .FALSE., then the contents of H are unspecified on exit.
                      (The output value of H when INFO > 0 is given under the
                      description of INFO below.)

                      This subroutine may explicitly set H(i,j) = 0 for i > j and
                      j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.

           LDH

                     LDH is INTEGER
                      The leading dimension of the array H. LDH >= max(1,N).

           WR

                     WR is DOUBLE PRECISION array, dimension (IHI)

           WI

                     WI is DOUBLE PRECISION array, dimension (IHI)
                      The real and imaginary parts, respectively, of the computed
                      eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
                      and WI(ILO:IHI). If two eigenvalues are computed as a
                      complex conjugate pair, they are stored in consecutive
                      elements of WR and WI, say the i-th and (i+1)th, with
                      WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
                      the eigenvalues are stored in the same order as on the
                      diagonal of the Schur form returned in H, with
                      WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
                      block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
                      WI(i+1) = -WI(i).

           ILOZ

                     ILOZ is INTEGER

           IHIZ

                     IHIZ is INTEGER
                      Specify the rows of Z to which transformations must be
                      applied if WANTZ is .TRUE..
                      1 <= ILOZ <= ILO; IHI <= IHIZ <= N.

           Z

                     Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
                      If WANTZ is .FALSE., then Z is not referenced.
                      If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                      replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                      orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
                      (The output value of Z when INFO > 0 is given under
                      the description of INFO below.)

           LDZ

                     LDZ is INTEGER
                      The leading dimension of the array Z.  if WANTZ is .TRUE.
                      then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.

           WORK

                     WORK is DOUBLE PRECISION array, dimension LWORK
                      On exit, if LWORK = -1, WORK(1) returns an estimate of
                      the optimal value for LWORK.

           LWORK

                     LWORK is INTEGER
                      The dimension of the array WORK.  LWORK >= max(1,N)
                      is sufficient, but LWORK typically as large as 6*N may
                      be required for optimal performance.  A workspace query
                      to determine the optimal workspace size is recommended.

                      If LWORK = -1, then DLAQR4 does a workspace query.
                      In this case, DLAQR4 checks the input parameters and
                      estimates the optimal workspace size for the given
                      values of N, ILO and IHI.  The estimate is returned
                      in WORK(1).  No error message related to LWORK is
                      issued by XERBLA.  Neither H nor Z are accessed.

           INFO

                     INFO is INTEGER
                        = 0:  successful exit
                        > 0:  if INFO = i, DLAQR4 failed to compute all of
                           the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                           and WI contain those eigenvalues which have been
                           successfully computed.  (Failures are rare.)

                           If INFO > 0 and WANT is .FALSE., then on exit,
                           the remaining unconverged eigenvalues are the eigen-
                           values of the upper Hessenberg matrix rows and
                           columns ILO through INFO of the final, output
                           value of H.

                           If INFO > 0 and WANTT is .TRUE., then on exit

                      (*)  (initial value of H)*U  = U*(final value of H)

                           where U is a orthogonal matrix.  The final
                           value of  H is upper Hessenberg and triangular in
                           rows and columns INFO+1 through IHI.

                           If INFO > 0 and WANTZ is .TRUE., then on exit

                             (final value of Z(ILO:IHI,ILOZ:IHIZ)
                              =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U

                           where U is the orthogonal matrix in (*) (regard-
                           less of the value of WANTT.)

                           If INFO > 0 and WANTZ is .FALSE., then Z is not
                           accessed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

       References:

             K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
             Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
             Performance, SIAM Journal of Matrix Analysis, volume 23, pages
             929--947, 2002.

            K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive
           Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

   subroutine slaqr4 (logical wantt, logical wantz, integer n, integer ilo, integer ihi, real,
       dimension( ldh, * ) h, integer ldh, real, dimension( * ) wr, real, dimension( * ) wi,
       integer iloz, integer ihiz, real, dimension( ldz, * ) z, integer ldz, real, dimension( * )
       work, integer lwork, integer info)
       SLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from
       the Schur decomposition.

       Purpose:

               SLAQR4 implements one level of recursion for SLAQR0.
               It is a complete implementation of the small bulge multi-shift
               QR algorithm.  It may be called by SLAQR0 and, for large enough
               deflation window size, it may be called by SLAQR3.  This
               subroutine is identical to SLAQR0 except that it calls SLAQR2
               instead of SLAQR3.

               SLAQR4 computes the eigenvalues of a Hessenberg matrix H
               and, optionally, the matrices T and Z from the Schur decomposition
               H = Z T Z**T, where T is an upper quasi-triangular matrix (the
               Schur form), and Z is the orthogonal matrix of Schur vectors.

               Optionally Z may be postmultiplied into an input orthogonal
               matrix Q so that this routine can give the Schur factorization
               of a matrix A which has been reduced to the Hessenberg form H
               by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.

       Parameters
           WANTT

                     WANTT is LOGICAL
                     = .TRUE. : the full Schur form T is required;
                     = .FALSE.: only eigenvalues are required.

           WANTZ

                     WANTZ is LOGICAL
                     = .TRUE. : the matrix of Schur vectors Z is required;
                     = .FALSE.: Schur vectors are not required.

           N

                     N is INTEGER
                      The order of the matrix H.  N >= 0.

           ILO

                     ILO is INTEGER

           IHI

                     IHI is INTEGER
                      It is assumed that H is already upper triangular in rows
                      and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
                      H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                      previous call to SGEBAL, and then passed to SGEHRD when the
                      matrix output by SGEBAL is reduced to Hessenberg form.
                      Otherwise, ILO and IHI should be set to 1 and N,
                      respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
                      If N = 0, then ILO = 1 and IHI = 0.

           H

                     H is REAL array, dimension (LDH,N)
                      On entry, the upper Hessenberg matrix H.
                      On exit, if INFO = 0 and WANTT is .TRUE., then H contains
                      the upper quasi-triangular matrix T from the Schur
                      decomposition (the Schur form); 2-by-2 diagonal blocks
                      (corresponding to complex conjugate pairs of eigenvalues)
                      are returned in standard form, with H(i,i) = H(i+1,i+1)
                      and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
                      .FALSE., then the contents of H are unspecified on exit.
                      (The output value of H when INFO > 0 is given under the
                      description of INFO below.)

                      This subroutine may explicitly set H(i,j) = 0 for i > j and
                      j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.

           LDH

                     LDH is INTEGER
                      The leading dimension of the array H. LDH >= max(1,N).

           WR

                     WR is REAL array, dimension (IHI)

           WI

                     WI is REAL array, dimension (IHI)
                      The real and imaginary parts, respectively, of the computed
                      eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
                      and WI(ILO:IHI). If two eigenvalues are computed as a
                      complex conjugate pair, they are stored in consecutive
                      elements of WR and WI, say the i-th and (i+1)th, with
                      WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
                      the eigenvalues are stored in the same order as on the
                      diagonal of the Schur form returned in H, with
                      WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
                      block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
                      WI(i+1) = -WI(i).

           ILOZ

                     ILOZ is INTEGER

           IHIZ

                     IHIZ is INTEGER
                      Specify the rows of Z to which transformations must be
                      applied if WANTZ is .TRUE..
                      1 <= ILOZ <= ILO; IHI <= IHIZ <= N.

           Z

                     Z is REAL array, dimension (LDZ,IHI)
                      If WANTZ is .FALSE., then Z is not referenced.
                      If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                      replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                      orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
                      (The output value of Z when INFO > 0 is given under
                      the description of INFO below.)

           LDZ

                     LDZ is INTEGER
                      The leading dimension of the array Z.  if WANTZ is .TRUE.
                      then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.

           WORK

                     WORK is REAL array, dimension LWORK
                      On exit, if LWORK = -1, WORK(1) returns an estimate of
                      the optimal value for LWORK.

           LWORK

                     LWORK is INTEGER
                      The dimension of the array WORK.  LWORK >= max(1,N)
                      is sufficient, but LWORK typically as large as 6*N may
                      be required for optimal performance.  A workspace query
                      to determine the optimal workspace size is recommended.

                      If LWORK = -1, then SLAQR4 does a workspace query.
                      In this case, SLAQR4 checks the input parameters and
                      estimates the optimal workspace size for the given
                      values of N, ILO and IHI.  The estimate is returned
                      in WORK(1).  No error message related to LWORK is
                      issued by XERBLA.  Neither H nor Z are accessed.

           INFO

                     INFO is INTEGER
            \verbatim
                     INFO is INTEGER
                        = 0:  successful exit
                        > 0:  if INFO = i, SLAQR4 failed to compute all of
                           the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                           and WI contain those eigenvalues which have been
                           successfully computed.  (Failures are rare.)

                           If INFO > 0 and WANT is .FALSE., then on exit,
                           the remaining unconverged eigenvalues are the eigen-
                           values of the upper Hessenberg matrix rows and
                           columns ILO through INFO of the final, output
                           value of H.

                           If INFO > 0 and WANTT is .TRUE., then on exit

                      (*)  (initial value of H)*U  = U*(final value of H)

                           where U is a orthogonal matrix.  The final
                           value of  H is upper Hessenberg and triangular in
                           rows and columns INFO+1 through IHI.

                           If INFO > 0 and WANTZ is .TRUE., then on exit

                             (final value of Z(ILO:IHI,ILOZ:IHIZ)
                              =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U

                           where U is the orthogonal matrix in (*) (regard-
                           less of the value of WANTT.)

                           If INFO > 0 and WANTZ is .FALSE., then Z is not
                           accessed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

       References:

             K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
             Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
             Performance, SIAM Journal of Matrix Analysis, volume 23, pages
             929--947, 2002.

            K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive
           Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

   subroutine zlaqr4 (logical wantt, logical wantz, integer n, integer ilo, integer ihi,
       complex*16, dimension( ldh, * ) h, integer ldh, complex*16, dimension( * ) w, integer
       iloz, integer ihiz, complex*16, dimension( ldz, * ) z, integer ldz, complex*16, dimension(
       * ) work, integer lwork, integer info)
       ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from
       the Schur decomposition.

       Purpose:

               ZLAQR4 implements one level of recursion for ZLAQR0.
               It is a complete implementation of the small bulge multi-shift
               QR algorithm.  It may be called by ZLAQR0 and, for large enough
               deflation window size, it may be called by ZLAQR3.  This
               subroutine is identical to ZLAQR0 except that it calls ZLAQR2
               instead of ZLAQR3.

               ZLAQR4 computes the eigenvalues of a Hessenberg matrix H
               and, optionally, the matrices T and Z from the Schur decomposition
               H = Z T Z**H, where T is an upper triangular matrix (the
               Schur form), and Z is the unitary matrix of Schur vectors.

               Optionally Z may be postmultiplied into an input unitary
               matrix Q so that this routine can give the Schur factorization
               of a matrix A which has been reduced to the Hessenberg form H
               by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.

       Parameters
           WANTT

                     WANTT is LOGICAL
                     = .TRUE. : the full Schur form T is required;
                     = .FALSE.: only eigenvalues are required.

           WANTZ

                     WANTZ is LOGICAL
                     = .TRUE. : the matrix of Schur vectors Z is required;
                     = .FALSE.: Schur vectors are not required.

           N

                     N is INTEGER
                      The order of the matrix H.  N >= 0.

           ILO

                     ILO is INTEGER

           IHI

                     IHI is INTEGER
                      It is assumed that H is already upper triangular in rows
                      and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
                      H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
                      previous call to ZGEBAL, and then passed to ZGEHRD when the
                      matrix output by ZGEBAL is reduced to Hessenberg form.
                      Otherwise, ILO and IHI should be set to 1 and N,
                      respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
                      If N = 0, then ILO = 1 and IHI = 0.

           H

                     H is COMPLEX*16 array, dimension (LDH,N)
                      On entry, the upper Hessenberg matrix H.
                      On exit, if INFO = 0 and WANTT is .TRUE., then H
                      contains the upper triangular matrix T from the Schur
                      decomposition (the Schur form). If INFO = 0 and WANT is
                      .FALSE., then the contents of H are unspecified on exit.
                      (The output value of H when INFO > 0 is given under the
                      description of INFO below.)

                      This subroutine may explicitly set H(i,j) = 0 for i > j and
                      j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.

           LDH

                     LDH is INTEGER
                      The leading dimension of the array H. LDH >= max(1,N).

           W

                     W is COMPLEX*16 array, dimension (N)
                      The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
                      in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
                      stored in the same order as on the diagonal of the Schur
                      form returned in H, with W(i) = H(i,i).

           ILOZ

                     ILOZ is INTEGER

           IHIZ

                     IHIZ is INTEGER
                      Specify the rows of Z to which transformations must be
                      applied if WANTZ is .TRUE..
                      1 <= ILOZ <= ILO; IHI <= IHIZ <= N.

           Z

                     Z is COMPLEX*16 array, dimension (LDZ,IHI)
                      If WANTZ is .FALSE., then Z is not referenced.
                      If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
                      replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
                      orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
                      (The output value of Z when INFO > 0 is given under
                      the description of INFO below.)

           LDZ

                     LDZ is INTEGER
                      The leading dimension of the array Z.  if WANTZ is .TRUE.
                      then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.

           WORK

                     WORK is COMPLEX*16 array, dimension LWORK
                      On exit, if LWORK = -1, WORK(1) returns an estimate of
                      the optimal value for LWORK.

           LWORK

                     LWORK is INTEGER
                      The dimension of the array WORK.  LWORK >= max(1,N)
                      is sufficient, but LWORK typically as large as 6*N may
                      be required for optimal performance.  A workspace query
                      to determine the optimal workspace size is recommended.

                      If LWORK = -1, then ZLAQR4 does a workspace query.
                      In this case, ZLAQR4 checks the input parameters and
                      estimates the optimal workspace size for the given
                      values of N, ILO and IHI.  The estimate is returned
                      in WORK(1).  No error message related to LWORK is
                      issued by XERBLA.  Neither H nor Z are accessed.

           INFO

                     INFO is INTEGER
                        =  0:  successful exit
                        > 0:  if INFO = i, ZLAQR4 failed to compute all of
                           the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
                           and WI contain those eigenvalues which have been
                           successfully computed.  (Failures are rare.)

                           If INFO > 0 and WANT is .FALSE., then on exit,
                           the remaining unconverged eigenvalues are the eigen-
                           values of the upper Hessenberg matrix rows and
                           columns ILO through INFO of the final, output
                           value of H.

                           If INFO > 0 and WANTT is .TRUE., then on exit

                      (*)  (initial value of H)*U  = U*(final value of H)

                           where U is a unitary matrix.  The final
                           value of  H is upper Hessenberg and triangular in
                           rows and columns INFO+1 through IHI.

                           If INFO > 0 and WANTZ is .TRUE., then on exit

                             (final value of Z(ILO:IHI,ILOZ:IHIZ)
                              =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U

                           where U is the unitary matrix in (*) (regard-
                           less of the value of WANTT.)

                           If INFO > 0 and WANTZ is .FALSE., then Z is not
                           accessed.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:
           Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA

       References:

             K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
             Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
             Performance, SIAM Journal of Matrix Analysis, volume 23, pages
             929--947, 2002.

            K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive
           Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948--973, 2002.

Author

       Generated automatically by Doxygen for LAPACK from the source code.