Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       lahef_rk - la{he,sy}f_rk: triangular factor step

SYNOPSIS

   Functions
       subroutine clahef_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           CLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix
           using bounded Bunch-Kaufman (rook) diagonal pivoting method.
       subroutine clasyf_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           CLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix
           using bounded Bunch-Kaufman (rook) diagonal pivoting method.
       subroutine dlasyf_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using
           bounded Bunch-Kaufman (rook) diagonal pivoting method.
       subroutine slasyf_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           SLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using
           bounded Bunch-Kaufman (rook) diagonal pivoting method.
       subroutine zlahef_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix
           using bounded Bunch-Kaufman (rook) diagonal pivoting method.
       subroutine zlasyf_rk (uplo, n, nb, kb, a, lda, e, ipiv, w, ldw, info)
           ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix
           using bounded Bunch-Kaufman (rook) diagonal pivoting method.

Detailed Description

Function Documentation

   subroutine clahef_rk (character uplo, integer n, integer nb, integer kb, complex, dimension(
       lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex,
       dimension( ldw, * ) w, integer ldw, integer info)
       CLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            CLAHEF_RK computes a partial factorization of a complex Hermitian
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**H U22**H )

            A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            CLAHEF_RK is an auxiliary routine called by CHETRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the Hermitian block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the Hermitian block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is COMPLEX array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine clasyf_rk (character uplo, integer n, integer nb, integer kb, complex, dimension(
       lda, * ) a, integer lda, complex, dimension( * ) e, integer, dimension( * ) ipiv, complex,
       dimension( ldw, * ) w, integer ldw, integer info)
       CLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            CLASYF_RK computes a partial factorization of a complex symmetric
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

            A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            CLASYF_RK is an auxiliary routine called by CSYTRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the symmetric matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is COMPLEX array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine dlasyf_rk (character uplo, integer n, integer nb, integer kb, double precision,
       dimension( lda, * ) a, integer lda, double precision, dimension( * ) e, integer,
       dimension( * ) ipiv, double precision, dimension( ldw, * ) w, integer ldw, integer info)
       DLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            DLASYF_RK computes a partial factorization of a real symmetric
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

            A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            DLASYF_RK is an auxiliary routine called by DSYTRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the symmetric matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is DOUBLE PRECISION array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is DOUBLE PRECISION array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine slasyf_rk (character uplo, integer n, integer nb, integer kb, real, dimension( lda,
       * ) a, integer lda, real, dimension( * ) e, integer, dimension( * ) ipiv, real, dimension(
       ldw, * ) w, integer ldw, integer info)
       SLASYF_RK computes a partial factorization of a real symmetric indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            SLASYF_RK computes a partial factorization of a real symmetric
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

            A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            SLASYF_RK is an auxiliary routine called by SSYTRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the symmetric matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is REAL array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is REAL array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine zlahef_rk (character uplo, integer n, integer nb, integer kb, complex*16,
       dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * )
       ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)
       ZLAHEF_RK computes a partial factorization of a complex Hermitian indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            ZLAHEF_RK computes a partial factorization of a complex Hermitian
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**H U22**H )

            A  =  ( L11  0 ) (  D   0  ) ( L11**H L21**H )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            ZLAHEF_RK is an auxiliary routine called by ZHETRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     Hermitian matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the Hermitian matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the Hermitian block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX*16 array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the Hermitian block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the Hermitian block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is COMPLEX*16 array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

   subroutine zlasyf_rk (character uplo, integer n, integer nb, integer kb, complex*16,
       dimension( lda, * ) a, integer lda, complex*16, dimension( * ) e, integer, dimension( * )
       ipiv, complex*16, dimension( ldw, * ) w, integer ldw, integer info)
       ZLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using
       bounded Bunch-Kaufman (rook) diagonal pivoting method.

       Purpose:

            ZLASYF_RK computes a partial factorization of a complex symmetric
            matrix A using the bounded Bunch-Kaufman (rook) diagonal
            pivoting method. The partial factorization has the form:

            A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
                  ( 0  U22 ) (  0   D  ) ( U12**T U22**T )

            A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
                  ( L21  I ) (  0  A22 ) (  0       I    )

            where the order of D is at most NB. The actual order is returned in
            the argument KB, and is either NB or NB-1, or N if N <= NB.

            ZLASYF_RK is an auxiliary routine called by ZSYTRF_RK. It uses
            blocked code (calling Level 3 BLAS) to update the submatrix
            A11 (if UPLO = 'U') or A22 (if UPLO = 'L').

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the upper or lower triangular part of the
                     symmetric matrix A is stored:
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           NB

                     NB is INTEGER
                     The maximum number of columns of the matrix A that should be
                     factored.  NB should be at least 2 to allow for 2-by-2 pivot
                     blocks.

           KB

                     KB is INTEGER
                     The number of columns of A that were actually factored.
                     KB is either NB-1 or NB, or N if N <= NB.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the symmetric matrix A.
                       If UPLO = 'U': the leading N-by-N upper triangular part
                       of A contains the upper triangular part of the matrix A,
                       and the strictly lower triangular part of A is not
                       referenced.

                       If UPLO = 'L': the leading N-by-N lower triangular part
                       of A contains the lower triangular part of the matrix A,
                       and the strictly upper triangular part of A is not
                       referenced.

                     On exit, contains:
                       a) ONLY diagonal elements of the symmetric block diagonal
                          matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
                          (superdiagonal (or subdiagonal) elements of D
                           are stored on exit in array E), and
                       b) If UPLO = 'U': factor U in the superdiagonal part of A.
                          If UPLO = 'L': factor L in the subdiagonal part of A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           E

                     E is COMPLEX*16 array, dimension (N)
                     On exit, contains the superdiagonal (or subdiagonal)
                     elements of the symmetric block diagonal matrix D
                     with 1-by-1 or 2-by-2 diagonal blocks, where
                     If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
                     If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.

                     NOTE: For 1-by-1 diagonal block D(k), where
                     1 <= k <= N, the element E(k) is set to 0 in both
                     UPLO = 'U' or UPLO = 'L' cases.

           IPIV

                     IPIV is INTEGER array, dimension (N)
                     IPIV describes the permutation matrix P in the factorization
                     of matrix A as follows. The absolute value of IPIV(k)
                     represents the index of row and column that were
                     interchanged with the k-th row and column. The value of UPLO
                     describes the order in which the interchanges were applied.
                     Also, the sign of IPIV represents the block structure of
                     the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
                     diagonal blocks which correspond to 1 or 2 interchanges
                     at each factorization step.

                     If UPLO = 'U',
                     ( in factorization order, k decreases from N to 1 ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,N-KB+1:N);
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k-1) < 0 means:
                          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the matrix A(1:N,N-KB+1:N).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k-1) != k-1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,N-KB+1:N).
                             If -IPIV(k-1) = k-1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

                     If UPLO = 'L',
                     ( in factorization order, k increases from 1 to N ):
                       a) A single positive entry IPIV(k) > 0 means:
                          D(k,k) is a 1-by-1 diagonal block.
                          If IPIV(k) != k, rows and columns k and IPIV(k) were
                          interchanged in the submatrix A(1:N,1:KB).
                          If IPIV(k) = k, no interchange occurred.

                       b) A pair of consecutive negative entries
                          IPIV(k) < 0 and IPIV(k+1) < 0 means:
                          D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
                          (NOTE: negative entries in IPIV appear ONLY in pairs).
                          1) If -IPIV(k) != k, rows and columns
                             k and -IPIV(k) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k) = k, no interchange occurred.
                          2) If -IPIV(k+1) != k+1, rows and columns
                             k-1 and -IPIV(k-1) were interchanged
                             in the submatrix A(1:N,1:KB).
                             If -IPIV(k+1) = k+1, no interchange occurred.

                       c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.

                       d) NOTE: Any entry IPIV(k) is always NONZERO on output.

           W

                     W is COMPLEX*16 array, dimension (LDW,NB)

           LDW

                     LDW is INTEGER
                     The leading dimension of the array W.  LDW >= max(1,N).

           INFO

                     INFO is INTEGER
                     = 0: successful exit

                     < 0: If INFO = -k, the k-th argument had an illegal value

                     > 0: If INFO = k, the matrix A is singular, because:
                            If UPLO = 'U': column k in the upper
                            triangular part of A contains all zeros.
                            If UPLO = 'L': column k in the lower
                            triangular part of A contains all zeros.

                          Therefore D(k,k) is exactly zero, and superdiagonal
                          elements of column k of U (or subdiagonal elements of
                          column k of L ) are all zeros. The factorization has
                          been completed, but the block diagonal matrix D is
                          exactly singular, and division by zero will occur if
                          it is used to solve a system of equations.

                          NOTE: INFO only stores the first occurrence of
                          a singularity, any subsequent occurrence of singularity
                          is not stored in INFO even though the factorization
                          always completes.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

             December 2016,  Igor Kozachenko,
                             Computer Science Division,
                             University of California, Berkeley

             September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
                             School of Mathematics,
                             University of Manchester

Author

       Generated automatically by Doxygen for LAPACK from the source code.