Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       unhr_col - {un,or}hr_col: Householder reconstruction

SYNOPSIS

   Functions
       subroutine cunhr_col (m, n, nb, a, lda, t, ldt, d, info)
           CUNHR_COL
       subroutine dorhr_col (m, n, nb, a, lda, t, ldt, d, info)
           DORHR_COL
       subroutine sorhr_col (m, n, nb, a, lda, t, ldt, d, info)
           SORHR_COL
       subroutine zunhr_col (m, n, nb, a, lda, t, ldt, d, info)
           ZUNHR_COL

Detailed Description

Function Documentation

   subroutine cunhr_col (integer m, integer n, integer nb, complex, dimension( lda, * ) a,
       integer lda, complex, dimension( ldt, * ) t, integer ldt, complex, dimension( * ) d,
       integer info)
       CUNHR_COL

       Purpose:

             CUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
             as input, stored in A, and performs Householder Reconstruction (HR),
             i.e. reconstructs Householder vectors V(i) implicitly representing
             another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
             where S is an N-by-N diagonal matrix with diagonal entries
             equal to +1 or -1. The Householder vectors (columns V(i) of V) are
             stored in A on output, and the diagonal entries of S are stored in D.
             Block reflectors are also returned in T
             (same output format as CGEQRT).

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           NB

                     NB is INTEGER
                     The column block size to be used in the reconstruction
                     of Householder column vector blocks in the array A and
                     corresponding block reflectors in the array T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size.)

           A

                     A is COMPLEX array, dimension (LDA,N)

                     On entry:

                        The array A contains an M-by-N orthonormal matrix Q_in,
                        i.e the columns of A are orthogonal unit vectors.

                     On exit:

                        The elements below the diagonal of A represent the unit
                        lower-trapezoidal matrix V of Householder column vectors
                        V(i). The unit diagonal entries of V are not stored
                        (same format as the output below the diagonal in A from
                        CGEQRT). The matrix T and the matrix V stored on output
                        in A implicitly define Q_out.

                        The elements above the diagonal contain the factor U
                        of the 'modified' LU-decomposition:
                           Q_in - ( S ) = V * U
                                  ( 0 )
                        where 0 is a (M-N)-by-(M-N) zero matrix.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is COMPLEX array,
                     dimension (LDT, N)

                     Let NOCB = Number_of_output_col_blocks
                              = CEIL(N/NB)

                     On exit, T(1:NB, 1:N) contains NOCB upper-triangular
                     block reflectors used to define Q_out stored in compact
                     form as a sequence of upper-triangular NB-by-NB column
                     blocks (same format as the output T in CGEQRT).
                     The matrix T and the matrix V stored on output in A
                     implicitly define Q_out. NOTE: The lower triangles
                     below the upper-triangular blocks will be filled with
                     zeros. See Further Details.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB,N)).

           D

                     D is COMPLEX array, dimension min(M,N).
                     The elements can be only plus or minus one.

                     D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
                     1 <= i <= min(M,N), and Q_in_i is Q_in after performing
                     i-1 steps of “modified” Gaussian elimination.
                     See Further Details.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Further Details:

            The computed M-by-M unitary factor Q_out is defined implicitly as
            a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
            the compact WY-representation format in the corresponding blocks of
            matrices V (stored in A) and T.

            The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
            matrix A contains the column vectors V(i) in NB-size column
            blocks VB(j). For example, VB(1) contains the columns
            V(1), V(2), ... V(NB). NOTE: The unit entries on
            the diagonal of Y are not stored in A.

            The number of column blocks is

                NOCB = Number_of_output_col_blocks = CEIL(N/NB)

            where each block is of order NB except for the last block, which
            is of order LAST_NB = N - (NOCB-1)*NB.

            For example, if M=6,  N=5 and NB=2, the matrix V is

                V = (    VB(1),   VB(2), VB(3) ) =

                  = (   1                      )
                    ( v21    1                 )
                    ( v31  v32    1            )
                    ( v41  v42  v43   1        )
                    ( v51  v52  v53  v54    1  )
                    ( v61  v62  v63  v54   v65 )

            For each of the column blocks VB(i), an upper-triangular block
            reflector TB(i) is computed. These blocks are stored as
            a sequence of upper-triangular column blocks in the NB-by-N
            matrix T. The size of each TB(i) block is NB-by-NB, except
            for the last block, whose size is LAST_NB-by-LAST_NB.

            For example, if M=6,  N=5 and NB=2, the matrix T is

                T  = (    TB(1),    TB(2), TB(3) ) =

                   = ( t11  t12  t13  t14   t15  )
                     (      t22       t24        )

            The M-by-M factor Q_out is given as a product of NOCB
            unitary M-by-M matrices Q_out(i).

                Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),

            where each matrix Q_out(i) is given by the WY-representation
            using corresponding blocks from the matrices V and T:

                Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,

            where I is the identity matrix. Here is the formula with matrix
            dimensions:

             Q(i){M-by-M} = I{M-by-M} -
               VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},

            where INB = NB, except for the last block NOCB
            for which INB=LAST_NB.

            =====
            NOTE:
            =====

            If Q_in is the result of doing a QR factorization
            B = Q_in * R_in, then:

            B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.

            So if one wants to interpret Q_out as the result
            of the QR factorization of B, then the corresponding R_out
            should be equal to R_out = S * R_in, i.e. some rows of R_in
            should be multiplied by -1.

            For the details of the algorithm, see [1].

            [1] 'Reconstructing Householder vectors from tall-skinny QR',
                G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                E. Solomonik, J. Parallel Distrib. Comput.,
                vol. 85, pp. 3-31, 2015.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November   2019, Igor Kozachenko,
                       Computer Science Division,
                       University of California, Berkeley

   subroutine dorhr_col (integer m, integer n, integer nb, double precision, dimension( lda, * )
       a, integer lda, double precision, dimension( ldt, * ) t, integer ldt, double precision,
       dimension( * ) d, integer info)
       DORHR_COL

       Purpose:

             DORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
             as input, stored in A, and performs Householder Reconstruction (HR),
             i.e. reconstructs Householder vectors V(i) implicitly representing
             another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
             where S is an N-by-N diagonal matrix with diagonal entries
             equal to +1 or -1. The Householder vectors (columns V(i) of V) are
             stored in A on output, and the diagonal entries of S are stored in D.
             Block reflectors are also returned in T
             (same output format as DGEQRT).

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           NB

                     NB is INTEGER
                     The column block size to be used in the reconstruction
                     of Householder column vector blocks in the array A and
                     corresponding block reflectors in the array T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size.)

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)

                     On entry:

                        The array A contains an M-by-N orthonormal matrix Q_in,
                        i.e the columns of A are orthogonal unit vectors.

                     On exit:

                        The elements below the diagonal of A represent the unit
                        lower-trapezoidal matrix V of Householder column vectors
                        V(i). The unit diagonal entries of V are not stored
                        (same format as the output below the diagonal in A from
                        DGEQRT). The matrix T and the matrix V stored on output
                        in A implicitly define Q_out.

                        The elements above the diagonal contain the factor U
                        of the 'modified' LU-decomposition:
                           Q_in - ( S ) = V * U
                                  ( 0 )
                        where 0 is a (M-N)-by-(M-N) zero matrix.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is DOUBLE PRECISION array,
                     dimension (LDT, N)

                     Let NOCB = Number_of_output_col_blocks
                              = CEIL(N/NB)

                     On exit, T(1:NB, 1:N) contains NOCB upper-triangular
                     block reflectors used to define Q_out stored in compact
                     form as a sequence of upper-triangular NB-by-NB column
                     blocks (same format as the output T in DGEQRT).
                     The matrix T and the matrix V stored on output in A
                     implicitly define Q_out. NOTE: The lower triangles
                     below the upper-triangular blocks will be filled with
                     zeros. See Further Details.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB,N)).

           D

                     D is DOUBLE PRECISION array, dimension min(M,N).
                     The elements can be only plus or minus one.

                     D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
                     1 <= i <= min(M,N), and Q_in_i is Q_in after performing
                     i-1 steps of “modified” Gaussian elimination.
                     See Further Details.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Further Details:

            The computed M-by-M orthogonal factor Q_out is defined implicitly as
            a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
            the compact WY-representation format in the corresponding blocks of
            matrices V (stored in A) and T.

            The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
            matrix A contains the column vectors V(i) in NB-size column
            blocks VB(j). For example, VB(1) contains the columns
            V(1), V(2), ... V(NB). NOTE: The unit entries on
            the diagonal of Y are not stored in A.

            The number of column blocks is

                NOCB = Number_of_output_col_blocks = CEIL(N/NB)

            where each block is of order NB except for the last block, which
            is of order LAST_NB = N - (NOCB-1)*NB.

            For example, if M=6,  N=5 and NB=2, the matrix V is

                V = (    VB(1),   VB(2), VB(3) ) =

                  = (   1                      )
                    ( v21    1                 )
                    ( v31  v32    1            )
                    ( v41  v42  v43   1        )
                    ( v51  v52  v53  v54    1  )
                    ( v61  v62  v63  v54   v65 )

            For each of the column blocks VB(i), an upper-triangular block
            reflector TB(i) is computed. These blocks are stored as
            a sequence of upper-triangular column blocks in the NB-by-N
            matrix T. The size of each TB(i) block is NB-by-NB, except
            for the last block, whose size is LAST_NB-by-LAST_NB.

            For example, if M=6,  N=5 and NB=2, the matrix T is

                T  = (    TB(1),    TB(2), TB(3) ) =

                   = ( t11  t12  t13  t14   t15  )
                     (      t22       t24        )

            The M-by-M factor Q_out is given as a product of NOCB
            orthogonal M-by-M matrices Q_out(i).

                Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),

            where each matrix Q_out(i) is given by the WY-representation
            using corresponding blocks from the matrices V and T:

                Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,

            where I is the identity matrix. Here is the formula with matrix
            dimensions:

             Q(i){M-by-M} = I{M-by-M} -
               VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},

            where INB = NB, except for the last block NOCB
            for which INB=LAST_NB.

            =====
            NOTE:
            =====

            If Q_in is the result of doing a QR factorization
            B = Q_in * R_in, then:

            B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.

            So if one wants to interpret Q_out as the result
            of the QR factorization of B, then the corresponding R_out
            should be equal to R_out = S * R_in, i.e. some rows of R_in
            should be multiplied by -1.

            For the details of the algorithm, see [1].

            [1] 'Reconstructing Householder vectors from tall-skinny QR',
                G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                E. Solomonik, J. Parallel Distrib. Comput.,
                vol. 85, pp. 3-31, 2015.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November   2019, Igor Kozachenko,
                       Computer Science Division,
                       University of California, Berkeley

   subroutine sorhr_col (integer m, integer n, integer nb, real, dimension( lda, * ) a, integer
       lda, real, dimension( ldt, * ) t, integer ldt, real, dimension( * ) d, integer info)
       SORHR_COL

       Purpose:

             SORHR_COL takes an M-by-N real matrix Q_in with orthonormal columns
             as input, stored in A, and performs Householder Reconstruction (HR),
             i.e. reconstructs Householder vectors V(i) implicitly representing
             another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
             where S is an N-by-N diagonal matrix with diagonal entries
             equal to +1 or -1. The Householder vectors (columns V(i) of V) are
             stored in A on output, and the diagonal entries of S are stored in D.
             Block reflectors are also returned in T
             (same output format as SGEQRT).

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           NB

                     NB is INTEGER
                     The column block size to be used in the reconstruction
                     of Householder column vector blocks in the array A and
                     corresponding block reflectors in the array T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size.)

           A

                     A is REAL array, dimension (LDA,N)

                     On entry:

                        The array A contains an M-by-N orthonormal matrix Q_in,
                        i.e the columns of A are orthogonal unit vectors.

                     On exit:

                        The elements below the diagonal of A represent the unit
                        lower-trapezoidal matrix V of Householder column vectors
                        V(i). The unit diagonal entries of V are not stored
                        (same format as the output below the diagonal in A from
                        SGEQRT). The matrix T and the matrix V stored on output
                        in A implicitly define Q_out.

                        The elements above the diagonal contain the factor U
                        of the 'modified' LU-decomposition:
                           Q_in - ( S ) = V * U
                                  ( 0 )
                        where 0 is a (M-N)-by-(M-N) zero matrix.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is REAL array,
                     dimension (LDT, N)

                     Let NOCB = Number_of_output_col_blocks
                              = CEIL(N/NB)

                     On exit, T(1:NB, 1:N) contains NOCB upper-triangular
                     block reflectors used to define Q_out stored in compact
                     form as a sequence of upper-triangular NB-by-NB column
                     blocks (same format as the output T in SGEQRT).
                     The matrix T and the matrix V stored on output in A
                     implicitly define Q_out. NOTE: The lower triangles
                     below the upper-triangular blocks will be filled with
                     zeros. See Further Details.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB,N)).

           D

                     D is REAL array, dimension min(M,N).
                     The elements can be only plus or minus one.

                     D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
                     1 <= i <= min(M,N), and Q_in_i is Q_in after performing
                     i-1 steps of “modified” Gaussian elimination.
                     See Further Details.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Further Details:

            The computed M-by-M orthogonal factor Q_out is defined implicitly as
            a product of orthogonal matrices Q_out(i). Each Q_out(i) is stored in
            the compact WY-representation format in the corresponding blocks of
            matrices V (stored in A) and T.

            The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
            matrix A contains the column vectors V(i) in NB-size column
            blocks VB(j). For example, VB(1) contains the columns
            V(1), V(2), ... V(NB). NOTE: The unit entries on
            the diagonal of Y are not stored in A.

            The number of column blocks is

                NOCB = Number_of_output_col_blocks = CEIL(N/NB)

            where each block is of order NB except for the last block, which
            is of order LAST_NB = N - (NOCB-1)*NB.

            For example, if M=6,  N=5 and NB=2, the matrix V is

                V = (    VB(1),   VB(2), VB(3) ) =

                  = (   1                      )
                    ( v21    1                 )
                    ( v31  v32    1            )
                    ( v41  v42  v43   1        )
                    ( v51  v52  v53  v54    1  )
                    ( v61  v62  v63  v54   v65 )

            For each of the column blocks VB(i), an upper-triangular block
            reflector TB(i) is computed. These blocks are stored as
            a sequence of upper-triangular column blocks in the NB-by-N
            matrix T. The size of each TB(i) block is NB-by-NB, except
            for the last block, whose size is LAST_NB-by-LAST_NB.

            For example, if M=6,  N=5 and NB=2, the matrix T is

                T  = (    TB(1),    TB(2), TB(3) ) =

                   = ( t11  t12  t13  t14   t15  )
                     (      t22       t24        )

            The M-by-M factor Q_out is given as a product of NOCB
            orthogonal M-by-M matrices Q_out(i).

                Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),

            where each matrix Q_out(i) is given by the WY-representation
            using corresponding blocks from the matrices V and T:

                Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,

            where I is the identity matrix. Here is the formula with matrix
            dimensions:

             Q(i){M-by-M} = I{M-by-M} -
               VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},

            where INB = NB, except for the last block NOCB
            for which INB=LAST_NB.

            =====
            NOTE:
            =====

            If Q_in is the result of doing a QR factorization
            B = Q_in * R_in, then:

            B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.

            So if one wants to interpret Q_out as the result
            of the QR factorization of B, then the corresponding R_out
            should be equal to R_out = S * R_in, i.e. some rows of R_in
            should be multiplied by -1.

            For the details of the algorithm, see [1].

            [1] 'Reconstructing Householder vectors from tall-skinny QR',
                G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                E. Solomonik, J. Parallel Distrib. Comput.,
                vol. 85, pp. 3-31, 2015.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November   2019, Igor Kozachenko,
                       Computer Science Division,
                       University of California, Berkeley

   subroutine zunhr_col (integer m, integer n, integer nb, complex*16, dimension( lda, * ) a,
       integer lda, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( * ) d,
       integer info)
       ZUNHR_COL

       Purpose:

             ZUNHR_COL takes an M-by-N complex matrix Q_in with orthonormal columns
             as input, stored in A, and performs Householder Reconstruction (HR),
             i.e. reconstructs Householder vectors V(i) implicitly representing
             another M-by-N matrix Q_out, with the property that Q_in = Q_out*S,
             where S is an N-by-N diagonal matrix with diagonal entries
             equal to +1 or -1. The Householder vectors (columns V(i) of V) are
             stored in A on output, and the diagonal entries of S are stored in D.
             Block reflectors are also returned in T
             (same output format as ZGEQRT).

       Parameters
           M

                     M is INTEGER
                     The number of rows of the matrix A. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix A. M >= N >= 0.

           NB

                     NB is INTEGER
                     The column block size to be used in the reconstruction
                     of Householder column vector blocks in the array A and
                     corresponding block reflectors in the array T. NB >= 1.
                     (Note that if NB > N, then N is used instead of NB
                     as the column block size.)

           A

                     A is COMPLEX*16 array, dimension (LDA,N)

                     On entry:

                        The array A contains an M-by-N orthonormal matrix Q_in,
                        i.e the columns of A are orthogonal unit vectors.

                     On exit:

                        The elements below the diagonal of A represent the unit
                        lower-trapezoidal matrix V of Householder column vectors
                        V(i). The unit diagonal entries of V are not stored
                        (same format as the output below the diagonal in A from
                        ZGEQRT). The matrix T and the matrix V stored on output
                        in A implicitly define Q_out.

                        The elements above the diagonal contain the factor U
                        of the 'modified' LU-decomposition:
                           Q_in - ( S ) = V * U
                                  ( 0 )
                        where 0 is a (M-N)-by-(M-N) zero matrix.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,M).

           T

                     T is COMPLEX*16 array,
                     dimension (LDT, N)

                     Let NOCB = Number_of_output_col_blocks
                              = CEIL(N/NB)

                     On exit, T(1:NB, 1:N) contains NOCB upper-triangular
                     block reflectors used to define Q_out stored in compact
                     form as a sequence of upper-triangular NB-by-NB column
                     blocks (same format as the output T in ZGEQRT).
                     The matrix T and the matrix V stored on output in A
                     implicitly define Q_out. NOTE: The lower triangles
                     below the upper-triangular blocks will be filled with
                     zeros. See Further Details.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= max(1,min(NB,N)).

           D

                     D is COMPLEX*16 array, dimension min(M,N).
                     The elements can be only plus or minus one.

                     D(i) is constructed as D(i) = -SIGN(Q_in_i(i,i)), where
                     1 <= i <= min(M,N), and Q_in_i is Q_in after performing
                     i-1 steps of “modified” Gaussian elimination.
                     See Further Details.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Further Details:

            The computed M-by-M unitary factor Q_out is defined implicitly as
            a product of unitary matrices Q_out(i). Each Q_out(i) is stored in
            the compact WY-representation format in the corresponding blocks of
            matrices V (stored in A) and T.

            The M-by-N unit lower-trapezoidal matrix V stored in the M-by-N
            matrix A contains the column vectors V(i) in NB-size column
            blocks VB(j). For example, VB(1) contains the columns
            V(1), V(2), ... V(NB). NOTE: The unit entries on
            the diagonal of Y are not stored in A.

            The number of column blocks is

                NOCB = Number_of_output_col_blocks = CEIL(N/NB)

            where each block is of order NB except for the last block, which
            is of order LAST_NB = N - (NOCB-1)*NB.

            For example, if M=6,  N=5 and NB=2, the matrix V is

                V = (    VB(1),   VB(2), VB(3) ) =

                  = (   1                      )
                    ( v21    1                 )
                    ( v31  v32    1            )
                    ( v41  v42  v43   1        )
                    ( v51  v52  v53  v54    1  )
                    ( v61  v62  v63  v54   v65 )

            For each of the column blocks VB(i), an upper-triangular block
            reflector TB(i) is computed. These blocks are stored as
            a sequence of upper-triangular column blocks in the NB-by-N
            matrix T. The size of each TB(i) block is NB-by-NB, except
            for the last block, whose size is LAST_NB-by-LAST_NB.

            For example, if M=6,  N=5 and NB=2, the matrix T is

                T  = (    TB(1),    TB(2), TB(3) ) =

                   = ( t11  t12  t13  t14   t15  )
                     (      t22       t24        )

            The M-by-M factor Q_out is given as a product of NOCB
            unitary M-by-M matrices Q_out(i).

                Q_out = Q_out(1) * Q_out(2) * ... * Q_out(NOCB),

            where each matrix Q_out(i) is given by the WY-representation
            using corresponding blocks from the matrices V and T:

                Q_out(i) = I - VB(i) * TB(i) * (VB(i))**T,

            where I is the identity matrix. Here is the formula with matrix
            dimensions:

             Q(i){M-by-M} = I{M-by-M} -
               VB(i){M-by-INB} * TB(i){INB-by-INB} * (VB(i))**T {INB-by-M},

            where INB = NB, except for the last block NOCB
            for which INB=LAST_NB.

            =====
            NOTE:
            =====

            If Q_in is the result of doing a QR factorization
            B = Q_in * R_in, then:

            B = (Q_out*S) * R_in = Q_out * (S * R_in) = Q_out * R_out.

            So if one wants to interpret Q_out as the result
            of the QR factorization of B, then the corresponding R_out
            should be equal to R_out = S * R_in, i.e. some rows of R_in
            should be multiplied by -1.

            For the details of the algorithm, see [1].

            [1] 'Reconstructing Householder vectors from tall-skinny QR',
                G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
                E. Solomonik, J. Parallel Distrib. Comput.,
                vol. 85, pp. 3-31, 2015.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Contributors:

            November   2019, Igor Kozachenko,
                       Computer Science Division,
                       University of California, Berkeley

Author

       Generated automatically by Doxygen for LAPACK from the source code.