Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       tbsv - tbsv: triangular matrix-vector solve

SYNOPSIS

   Functions
       subroutine ctbsv (uplo, trans, diag, n, k, a, lda, x, incx)
           CTBSV
       subroutine dtbsv (uplo, trans, diag, n, k, a, lda, x, incx)
           DTBSV
       subroutine stbsv (uplo, trans, diag, n, k, a, lda, x, incx)
           STBSV
       subroutine ztbsv (uplo, trans, diag, n, k, a, lda, x, incx)
           ZTBSV

Detailed Description

Function Documentation

   subroutine ctbsv (character uplo, character trans, character diag, integer n, integer k,
       complex, dimension(lda,*) a, integer lda, complex, dimension(*) x, integer incx)
       CTBSV

       Purpose:

            CTBSV  solves one of the systems of equations

               A*x = b,   or   A**T*x = b,   or   A**H*x = b,

            where b and x are n element vectors and A is an n by n unit, or
            non-unit, upper or lower triangular band matrix, with ( k + 1 )
            diagonals.

            No test for singularity or near-singularity is included in this
            routine. Such tests must be performed before calling this routine.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the matrix is an upper or
                      lower triangular matrix as follows:

                         UPLO = 'U' or 'u'   A is an upper triangular matrix.

                         UPLO = 'L' or 'l'   A is a lower triangular matrix.

           TRANS

                     TRANS is CHARACTER*1
                      On entry, TRANS specifies the equations to be solved as
                      follows:

                         TRANS = 'N' or 'n'   A*x = b.

                         TRANS = 'T' or 't'   A**T*x = b.

                         TRANS = 'C' or 'c'   A**H*x = b.

           DIAG

                     DIAG is CHARACTER*1
                      On entry, DIAG specifies whether or not A is unit
                      triangular as follows:

                         DIAG = 'U' or 'u'   A is assumed to be unit triangular.

                         DIAG = 'N' or 'n'   A is not assumed to be unit
                                             triangular.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           K

                     K is INTEGER
                      On entry with UPLO = 'U' or 'u', K specifies the number of
                      super-diagonals of the matrix A.
                      On entry with UPLO = 'L' or 'l', K specifies the number of
                      sub-diagonals of the matrix A.
                      K must satisfy  0 .le. K.

           A

                     A is COMPLEX array, dimension ( LDA, N )
                      Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                      by n part of the array A must contain the upper triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row
                      ( k + 1 ) of the array, the first super-diagonal starting at
                      position 2 in row k, and so on. The top left k by k triangle
                      of the array A is not referenced.
                      The following program segment will transfer an upper
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = K + 1 - J
                               DO 10, I = MAX( 1, J - K ), J
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                      by n part of the array A must contain the lower triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row 1 of
                      the array, the first sub-diagonal starting at position 1 in
                      row 2, and so on. The bottom right k by k triangle of the
                      array A is not referenced.
                      The following program segment will transfer a lower
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = 1 - J
                               DO 10, I = J, MIN( N, J + K )
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Note that when DIAG = 'U' or 'u' the elements of the array A
                      corresponding to the diagonal elements of the matrix are not
                      referenced, but are assumed to be unity.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program. LDA must be at least
                      ( k + 1 ).

           X

                     X is COMPLEX array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element right-hand side vector b. On exit, X is overwritten
                      with the solution vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine dtbsv (character uplo, character trans, character diag, integer n, integer k,
       double precision, dimension(lda,*) a, integer lda, double precision, dimension(*) x,
       integer incx)
       DTBSV

       Purpose:

            DTBSV  solves one of the systems of equations

               A*x = b,   or   A**T*x = b,

            where b and x are n element vectors and A is an n by n unit, or
            non-unit, upper or lower triangular band matrix, with ( k + 1 )
            diagonals.

            No test for singularity or near-singularity is included in this
            routine. Such tests must be performed before calling this routine.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the matrix is an upper or
                      lower triangular matrix as follows:

                         UPLO = 'U' or 'u'   A is an upper triangular matrix.

                         UPLO = 'L' or 'l'   A is a lower triangular matrix.

           TRANS

                     TRANS is CHARACTER*1
                      On entry, TRANS specifies the equations to be solved as
                      follows:

                         TRANS = 'N' or 'n'   A*x = b.

                         TRANS = 'T' or 't'   A**T*x = b.

                         TRANS = 'C' or 'c'   A**T*x = b.

           DIAG

                     DIAG is CHARACTER*1
                      On entry, DIAG specifies whether or not A is unit
                      triangular as follows:

                         DIAG = 'U' or 'u'   A is assumed to be unit triangular.

                         DIAG = 'N' or 'n'   A is not assumed to be unit
                                             triangular.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           K

                     K is INTEGER
                      On entry with UPLO = 'U' or 'u', K specifies the number of
                      super-diagonals of the matrix A.
                      On entry with UPLO = 'L' or 'l', K specifies the number of
                      sub-diagonals of the matrix A.
                      K must satisfy  0 .le. K.

           A

                     A is DOUBLE PRECISION array, dimension ( LDA, N )
                      Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                      by n part of the array A must contain the upper triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row
                      ( k + 1 ) of the array, the first super-diagonal starting at
                      position 2 in row k, and so on. The top left k by k triangle
                      of the array A is not referenced.
                      The following program segment will transfer an upper
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = K + 1 - J
                               DO 10, I = MAX( 1, J - K ), J
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                      by n part of the array A must contain the lower triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row 1 of
                      the array, the first sub-diagonal starting at position 1 in
                      row 2, and so on. The bottom right k by k triangle of the
                      array A is not referenced.
                      The following program segment will transfer a lower
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = 1 - J
                               DO 10, I = J, MIN( N, J + K )
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Note that when DIAG = 'U' or 'u' the elements of the array A
                      corresponding to the diagonal elements of the matrix are not
                      referenced, but are assumed to be unity.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program. LDA must be at least
                      ( k + 1 ).

           X

                     X is DOUBLE PRECISION array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element right-hand side vector b. On exit, X is overwritten
                      with the solution vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine stbsv (character uplo, character trans, character diag, integer n, integer k, real,
       dimension(lda,*) a, integer lda, real, dimension(*) x, integer incx)
       STBSV

       Purpose:

            STBSV  solves one of the systems of equations

               A*x = b,   or   A**T*x = b,

            where b and x are n element vectors and A is an n by n unit, or
            non-unit, upper or lower triangular band matrix, with ( k + 1 )
            diagonals.

            No test for singularity or near-singularity is included in this
            routine. Such tests must be performed before calling this routine.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the matrix is an upper or
                      lower triangular matrix as follows:

                         UPLO = 'U' or 'u'   A is an upper triangular matrix.

                         UPLO = 'L' or 'l'   A is a lower triangular matrix.

           TRANS

                     TRANS is CHARACTER*1
                      On entry, TRANS specifies the equations to be solved as
                      follows:

                         TRANS = 'N' or 'n'   A*x = b.

                         TRANS = 'T' or 't'   A**T*x = b.

                         TRANS = 'C' or 'c'   A**T*x = b.

           DIAG

                     DIAG is CHARACTER*1
                      On entry, DIAG specifies whether or not A is unit
                      triangular as follows:

                         DIAG = 'U' or 'u'   A is assumed to be unit triangular.

                         DIAG = 'N' or 'n'   A is not assumed to be unit
                                             triangular.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           K

                     K is INTEGER
                      On entry with UPLO = 'U' or 'u', K specifies the number of
                      super-diagonals of the matrix A.
                      On entry with UPLO = 'L' or 'l', K specifies the number of
                      sub-diagonals of the matrix A.
                      K must satisfy  0 .le. K.

           A

                     A is REAL array, dimension ( LDA, N )
                      Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                      by n part of the array A must contain the upper triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row
                      ( k + 1 ) of the array, the first super-diagonal starting at
                      position 2 in row k, and so on. The top left k by k triangle
                      of the array A is not referenced.
                      The following program segment will transfer an upper
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = K + 1 - J
                               DO 10, I = MAX( 1, J - K ), J
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                      by n part of the array A must contain the lower triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row 1 of
                      the array, the first sub-diagonal starting at position 1 in
                      row 2, and so on. The bottom right k by k triangle of the
                      array A is not referenced.
                      The following program segment will transfer a lower
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = 1 - J
                               DO 10, I = J, MIN( N, J + K )
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Note that when DIAG = 'U' or 'u' the elements of the array A
                      corresponding to the diagonal elements of the matrix are not
                      referenced, but are assumed to be unity.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program. LDA must be at least
                      ( k + 1 ).

           X

                     X is REAL array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element right-hand side vector b. On exit, X is overwritten
                      with the solution vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine ztbsv (character uplo, character trans, character diag, integer n, integer k,
       complex*16, dimension(lda,*) a, integer lda, complex*16, dimension(*) x, integer incx)
       ZTBSV

       Purpose:

            ZTBSV  solves one of the systems of equations

               A*x = b,   or   A**T*x = b,   or   A**H*x = b,

            where b and x are n element vectors and A is an n by n unit, or
            non-unit, upper or lower triangular band matrix, with ( k + 1 )
            diagonals.

            No test for singularity or near-singularity is included in this
            routine. Such tests must be performed before calling this routine.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the matrix is an upper or
                      lower triangular matrix as follows:

                         UPLO = 'U' or 'u'   A is an upper triangular matrix.

                         UPLO = 'L' or 'l'   A is a lower triangular matrix.

           TRANS

                     TRANS is CHARACTER*1
                      On entry, TRANS specifies the equations to be solved as
                      follows:

                         TRANS = 'N' or 'n'   A*x = b.

                         TRANS = 'T' or 't'   A**T*x = b.

                         TRANS = 'C' or 'c'   A**H*x = b.

           DIAG

                     DIAG is CHARACTER*1
                      On entry, DIAG specifies whether or not A is unit
                      triangular as follows:

                         DIAG = 'U' or 'u'   A is assumed to be unit triangular.

                         DIAG = 'N' or 'n'   A is not assumed to be unit
                                             triangular.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           K

                     K is INTEGER
                      On entry with UPLO = 'U' or 'u', K specifies the number of
                      super-diagonals of the matrix A.
                      On entry with UPLO = 'L' or 'l', K specifies the number of
                      sub-diagonals of the matrix A.
                      K must satisfy  0 .le. K.

           A

                     A is COMPLEX*16 array, dimension ( LDA, N )
                      Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
                      by n part of the array A must contain the upper triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row
                      ( k + 1 ) of the array, the first super-diagonal starting at
                      position 2 in row k, and so on. The top left k by k triangle
                      of the array A is not referenced.
                      The following program segment will transfer an upper
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = K + 1 - J
                               DO 10, I = MAX( 1, J - K ), J
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
                      by n part of the array A must contain the lower triangular
                      band part of the matrix of coefficients, supplied column by
                      column, with the leading diagonal of the matrix in row 1 of
                      the array, the first sub-diagonal starting at position 1 in
                      row 2, and so on. The bottom right k by k triangle of the
                      array A is not referenced.
                      The following program segment will transfer a lower
                      triangular band matrix from conventional full matrix storage
                      to band storage:

                            DO 20, J = 1, N
                               M = 1 - J
                               DO 10, I = J, MIN( N, J + K )
                                  A( M + I, J ) = matrix( I, J )
                         10    CONTINUE
                         20 CONTINUE

                      Note that when DIAG = 'U' or 'u' the elements of the array A
                      corresponding to the diagonal elements of the matrix are not
                      referenced, but are assumed to be unity.

           LDA

                     LDA is INTEGER
                      On entry, LDA specifies the first dimension of A as declared
                      in the calling (sub) program. LDA must be at least
                      ( k + 1 ).

           X

                     X is COMPLEX*16 array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element right-hand side vector b. On exit, X is overwritten
                      with the solution vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

Author

       Generated automatically by Doxygen for LAPACK from the source code.