Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       tprfb - tprfb: applies Q (like larfb)

SYNOPSIS

   Functions
       subroutine ctprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b,
           ldb, work, ldwork)
           CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix,
           which is composed of two blocks.
       subroutine dtprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b,
           ldb, work, ldwork)
           DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which
           is composed of two blocks.
       subroutine stprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b,
           ldb, work, ldwork)
           STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which
           is composed of two blocks.
       subroutine ztprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b,
           ldb, work, ldwork)
           ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix,
           which is composed of two blocks.

Detailed Description

Function Documentation

   subroutine ctprfb (character side, character trans, character direct, character storev,
       integer m, integer n, integer k, integer l, complex, dimension( ldv, * ) v, integer ldv,
       complex, dimension( ldt, * ) t, integer ldt, complex, dimension( lda, * ) a, integer lda,
       complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldwork, * ) work, integer
       ldwork)
       CTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix,
       which is composed of two blocks.

       Purpose:

            CTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
            conjugate transpose H**H to a complex matrix C, which is composed of two
            blocks A and B, either from the left or right.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply H or H**H from the Left
                     = 'R': apply H or H**H from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply H (No transpose)
                     = 'C': apply H**H (Conjugate transpose)

           DIRECT

                     DIRECT is CHARACTER*1
                     Indicates how H is formed from a product of elementary
                     reflectors
                     = 'F': H = H(1) H(2) . . . H(k) (Forward)
                     = 'B': H = H(k) . . . H(2) H(1) (Backward)

           STOREV

                     STOREV is CHARACTER*1
                     Indicates how the vectors which define the elementary
                     reflectors are stored:
                     = 'C': Columns
                     = 'R': Rows

           M

                     M is INTEGER
                     The number of rows of the matrix B.
                     M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix B.
                     N >= 0.

           K

                     K is INTEGER
                     The order of the matrix T, i.e. the number of elementary
                     reflectors whose product defines the block reflector.
                     K >= 0.

           L

                     L is INTEGER
                     The order of the trapezoidal part of V.
                     K >= L >= 0.  See Further Details.

           V

                     V is COMPLEX array, dimension
                                           (LDV,K) if STOREV = 'C'
                                           (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                           (LDV,N) if STOREV = 'R' and SIDE = 'R'
                     The pentagonal matrix V, which contains the elementary reflectors
                     H(1), H(2), ..., H(K).  See Further Details.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V.
                     If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
                     if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
                     if STOREV = 'R', LDV >= K.

           T

                     T is COMPLEX array, dimension (LDT,K)
                     The triangular K-by-K matrix T in the representation of the
                     block reflector.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= K.

           A

                     A is COMPLEX array, dimension
                     (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
                     On entry, the K-by-N or M-by-K matrix A.
                     On exit, A is overwritten by the corresponding block of
                     H*C or H**H*C or C*H or C*H**H.  See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.
                     If SIDE = 'L', LDA >= max(1,K);
                     If SIDE = 'R', LDA >= max(1,M).

           B

                     B is COMPLEX array, dimension (LDB,N)
                     On entry, the M-by-N matrix B.
                     On exit, B is overwritten by the corresponding block of
                     H*C or H**H*C or C*H or C*H**H.  See Further Details.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.
                     LDB >= max(1,M).

           WORK

                     WORK is COMPLEX array, dimension
                     (LDWORK,N) if SIDE = 'L',
                     (LDWORK,K) if SIDE = 'R'.

           LDWORK

                     LDWORK is INTEGER
                     The leading dimension of the array WORK.
                     If SIDE = 'L', LDWORK >= K;
                     if SIDE = 'R', LDWORK >= M.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix C is a composite matrix formed from blocks A and B.
             The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
             and if SIDE = 'L', A is of size K-by-N.

             If SIDE = 'R' and DIRECT = 'F', C = [A B].

             If SIDE = 'L' and DIRECT = 'F', C = [A]
                                                 [B].

             If SIDE = 'R' and DIRECT = 'B', C = [B A].

             If SIDE = 'L' and DIRECT = 'B', C = [B]
                                                 [A].

             The pentagonal matrix V is composed of a rectangular block V1 and a
             trapezoidal block V2.  The size of the trapezoidal block is determined by
             the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
             if L=0, there is no trapezoidal block, thus V = V1 is rectangular.

             If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                                    [V2]
                - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)

             If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]

                - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                                    [V1]
                - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]

                - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)

             If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.

             If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.

             If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.

             If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

   subroutine dtprfb (character side, character trans, character direct, character storev,
       integer m, integer n, integer k, integer l, double precision, dimension( ldv, * ) v,
       integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision,
       dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb,
       double precision, dimension( ldwork, * ) work, integer ldwork)
       DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is
       composed of two blocks.

       Purpose:

            DTPRFB applies a real 'triangular-pentagonal' block reflector H or its
            transpose H**T to a real matrix C, which is composed of two
            blocks A and B, either from the left or right.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply H or H**T from the Left
                     = 'R': apply H or H**T from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply H (No transpose)
                     = 'T': apply H**T (Transpose)

           DIRECT

                     DIRECT is CHARACTER*1
                     Indicates how H is formed from a product of elementary
                     reflectors
                     = 'F': H = H(1) H(2) . . . H(k) (Forward)
                     = 'B': H = H(k) . . . H(2) H(1) (Backward)

           STOREV

                     STOREV is CHARACTER*1
                     Indicates how the vectors which define the elementary
                     reflectors are stored:
                     = 'C': Columns
                     = 'R': Rows

           M

                     M is INTEGER
                     The number of rows of the matrix B.
                     M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix B.
                     N >= 0.

           K

                     K is INTEGER
                     The order of the matrix T, i.e. the number of elementary
                     reflectors whose product defines the block reflector.
                     K >= 0.

           L

                     L is INTEGER
                     The order of the trapezoidal part of V.
                     K >= L >= 0.  See Further Details.

           V

                     V is DOUBLE PRECISION array, dimension
                                           (LDV,K) if STOREV = 'C'
                                           (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                           (LDV,N) if STOREV = 'R' and SIDE = 'R'
                     The pentagonal matrix V, which contains the elementary reflectors
                     H(1), H(2), ..., H(K).  See Further Details.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V.
                     If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
                     if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
                     if STOREV = 'R', LDV >= K.

           T

                     T is DOUBLE PRECISION array, dimension (LDT,K)
                     The triangular K-by-K matrix T in the representation of the
                     block reflector.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= K.

           A

                     A is DOUBLE PRECISION array, dimension
                     (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
                     On entry, the K-by-N or M-by-K matrix A.
                     On exit, A is overwritten by the corresponding block of
                     H*C or H**T*C or C*H or C*H**T.  See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.
                     If SIDE = 'L', LDA >= max(1,K);
                     If SIDE = 'R', LDA >= max(1,M).

           B

                     B is DOUBLE PRECISION array, dimension (LDB,N)
                     On entry, the M-by-N matrix B.
                     On exit, B is overwritten by the corresponding block of
                     H*C or H**T*C or C*H or C*H**T.  See Further Details.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.
                     LDB >= max(1,M).

           WORK

                     WORK is DOUBLE PRECISION array, dimension
                     (LDWORK,N) if SIDE = 'L',
                     (LDWORK,K) if SIDE = 'R'.

           LDWORK

                     LDWORK is INTEGER
                     The leading dimension of the array WORK.
                     If SIDE = 'L', LDWORK >= K;
                     if SIDE = 'R', LDWORK >= M.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix C is a composite matrix formed from blocks A and B.
             The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
             and if SIDE = 'L', A is of size K-by-N.

             If SIDE = 'R' and DIRECT = 'F', C = [A B].

             If SIDE = 'L' and DIRECT = 'F', C = [A]
                                                 [B].

             If SIDE = 'R' and DIRECT = 'B', C = [B A].

             If SIDE = 'L' and DIRECT = 'B', C = [B]
                                                 [A].

             The pentagonal matrix V is composed of a rectangular block V1 and a
             trapezoidal block V2.  The size of the trapezoidal block is determined by
             the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
             if L=0, there is no trapezoidal block, thus V = V1 is rectangular.

             If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                                    [V2]
                - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)

             If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]

                - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                                    [V1]
                - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]

                - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)

             If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.

             If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.

             If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.

             If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

   subroutine stprfb (character side, character trans, character direct, character storev,
       integer m, integer n, integer k, integer l, real, dimension( ldv, * ) v, integer ldv,
       real, dimension( ldt, * ) t, integer ldt, real, dimension( lda, * ) a, integer lda, real,
       dimension( ldb, * ) b, integer ldb, real, dimension( ldwork, * ) work, integer ldwork)
       STPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is
       composed of two blocks.

       Purpose:

            STPRFB applies a real 'triangular-pentagonal' block reflector H or its
            transpose H**T to a real matrix C, which is composed of two
            blocks A and B, either from the left or right.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply H or H**T from the Left
                     = 'R': apply H or H**T from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply H (No transpose)
                     = 'T': apply H**T (Transpose)

           DIRECT

                     DIRECT is CHARACTER*1
                     Indicates how H is formed from a product of elementary
                     reflectors
                     = 'F': H = H(1) H(2) . . . H(k) (Forward)
                     = 'B': H = H(k) . . . H(2) H(1) (Backward)

           STOREV

                     STOREV is CHARACTER*1
                     Indicates how the vectors which define the elementary
                     reflectors are stored:
                     = 'C': Columns
                     = 'R': Rows

           M

                     M is INTEGER
                     The number of rows of the matrix B.
                     M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix B.
                     N >= 0.

           K

                     K is INTEGER
                     The order of the matrix T, i.e. the number of elementary
                     reflectors whose product defines the block reflector.
                     K >= 0.

           L

                     L is INTEGER
                     The order of the trapezoidal part of V.
                     K >= L >= 0.  See Further Details.

           V

                     V is REAL array, dimension
                                           (LDV,K) if STOREV = 'C'
                                           (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                           (LDV,N) if STOREV = 'R' and SIDE = 'R'
                     The pentagonal matrix V, which contains the elementary reflectors
                     H(1), H(2), ..., H(K).  See Further Details.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V.
                     If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
                     if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
                     if STOREV = 'R', LDV >= K.

           T

                     T is REAL array, dimension (LDT,K)
                     The triangular K-by-K matrix T in the representation of the
                     block reflector.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= K.

           A

                     A is REAL array, dimension
                     (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
                     On entry, the K-by-N or M-by-K matrix A.
                     On exit, A is overwritten by the corresponding block of
                     H*C or H**T*C or C*H or C*H**T.  See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.
                     If SIDE = 'L', LDA >= max(1,K);
                     If SIDE = 'R', LDA >= max(1,M).

           B

                     B is REAL array, dimension (LDB,N)
                     On entry, the M-by-N matrix B.
                     On exit, B is overwritten by the corresponding block of
                     H*C or H**T*C or C*H or C*H**T.  See Further Details.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.
                     LDB >= max(1,M).

           WORK

                     WORK is REAL array, dimension
                     (LDWORK,N) if SIDE = 'L',
                     (LDWORK,K) if SIDE = 'R'.

           LDWORK

                     LDWORK is INTEGER
                     The leading dimension of the array WORK.
                     If SIDE = 'L', LDWORK >= K;
                     if SIDE = 'R', LDWORK >= M.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix C is a composite matrix formed from blocks A and B.
             The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
             and if SIDE = 'L', A is of size K-by-N.

             If SIDE = 'R' and DIRECT = 'F', C = [A B].

             If SIDE = 'L' and DIRECT = 'F', C = [A]
                                                 [B].

             If SIDE = 'R' and DIRECT = 'B', C = [B A].

             If SIDE = 'L' and DIRECT = 'B', C = [B]
                                                 [A].

             The pentagonal matrix V is composed of a rectangular block V1 and a
             trapezoidal block V2.  The size of the trapezoidal block is determined by
             the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
             if L=0, there is no trapezoidal block, thus V = V1 is rectangular.

             If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                                    [V2]
                - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)

             If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]

                - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                                    [V1]
                - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]

                - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)

             If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.

             If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.

             If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.

             If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

   subroutine ztprfb (character side, character trans, character direct, character storev,
       integer m, integer n, integer k, integer l, complex*16, dimension( ldv, * ) v, integer
       ldv, complex*16, dimension( ldt, * ) t, integer ldt, complex*16, dimension( lda, * ) a,
       integer lda, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension(
       ldwork, * ) work, integer ldwork)
       ZTPRFB applies a complex 'triangular-pentagonal' block reflector to a complex matrix,
       which is composed of two blocks.

       Purpose:

            ZTPRFB applies a complex 'triangular-pentagonal' block reflector H or its
            conjugate transpose H**H to a complex matrix C, which is composed of two
            blocks A and B, either from the left or right.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply H or H**H from the Left
                     = 'R': apply H or H**H from the Right

           TRANS

                     TRANS is CHARACTER*1
                     = 'N': apply H (No transpose)
                     = 'C': apply H**H (Conjugate transpose)

           DIRECT

                     DIRECT is CHARACTER*1
                     Indicates how H is formed from a product of elementary
                     reflectors
                     = 'F': H = H(1) H(2) . . . H(k) (Forward)
                     = 'B': H = H(k) . . . H(2) H(1) (Backward)

           STOREV

                     STOREV is CHARACTER*1
                     Indicates how the vectors which define the elementary
                     reflectors are stored:
                     = 'C': Columns
                     = 'R': Rows

           M

                     M is INTEGER
                     The number of rows of the matrix B.
                     M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix B.
                     N >= 0.

           K

                     K is INTEGER
                     The order of the matrix T, i.e. the number of elementary
                     reflectors whose product defines the block reflector.
                     K >= 0.

           L

                     L is INTEGER
                     The order of the trapezoidal part of V.
                     K >= L >= 0.  See Further Details.

           V

                     V is COMPLEX*16 array, dimension
                                           (LDV,K) if STOREV = 'C'
                                           (LDV,M) if STOREV = 'R' and SIDE = 'L'
                                           (LDV,N) if STOREV = 'R' and SIDE = 'R'
                     The pentagonal matrix V, which contains the elementary reflectors
                     H(1), H(2), ..., H(K).  See Further Details.

           LDV

                     LDV is INTEGER
                     The leading dimension of the array V.
                     If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
                     if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
                     if STOREV = 'R', LDV >= K.

           T

                     T is COMPLEX*16 array, dimension (LDT,K)
                     The triangular K-by-K matrix T in the representation of the
                     block reflector.

           LDT

                     LDT is INTEGER
                     The leading dimension of the array T.
                     LDT >= K.

           A

                     A is COMPLEX*16 array, dimension
                     (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R'
                     On entry, the K-by-N or M-by-K matrix A.
                     On exit, A is overwritten by the corresponding block of
                     H*C or H**H*C or C*H or C*H**H.  See Further Details.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.
                     If SIDE = 'L', LDA >= max(1,K);
                     If SIDE = 'R', LDA >= max(1,M).

           B

                     B is COMPLEX*16 array, dimension (LDB,N)
                     On entry, the M-by-N matrix B.
                     On exit, B is overwritten by the corresponding block of
                     H*C or H**H*C or C*H or C*H**H.  See Further Details.

           LDB

                     LDB is INTEGER
                     The leading dimension of the array B.
                     LDB >= max(1,M).

           WORK

                     WORK is COMPLEX*16 array, dimension
                     (LDWORK,N) if SIDE = 'L',
                     (LDWORK,K) if SIDE = 'R'.

           LDWORK

                     LDWORK is INTEGER
                     The leading dimension of the array WORK.
                     If SIDE = 'L', LDWORK >= K;
                     if SIDE = 'R', LDWORK >= M.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             The matrix C is a composite matrix formed from blocks A and B.
             The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K,
             and if SIDE = 'L', A is of size K-by-N.

             If SIDE = 'R' and DIRECT = 'F', C = [A B].

             If SIDE = 'L' and DIRECT = 'F', C = [A]
                                                 [B].

             If SIDE = 'R' and DIRECT = 'B', C = [B A].

             If SIDE = 'L' and DIRECT = 'B', C = [B]
                                                 [A].

             The pentagonal matrix V is composed of a rectangular block V1 and a
             trapezoidal block V2.  The size of the trapezoidal block is determined by
             the parameter L, where 0<=L<=K.  If L=K, the V2 block of V is triangular;
             if L=0, there is no trapezoidal block, thus V = V1 is rectangular.

             If DIRECT = 'F' and STOREV = 'C':  V = [V1]
                                                    [V2]
                - V2 is upper trapezoidal (first L rows of K-by-K upper triangular)

             If DIRECT = 'F' and STOREV = 'R':  V = [V1 V2]

                - V2 is lower trapezoidal (first L columns of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'C':  V = [V2]
                                                    [V1]
                - V2 is lower trapezoidal (last L rows of K-by-K lower triangular)

             If DIRECT = 'B' and STOREV = 'R':  V = [V2 V1]

                - V2 is upper trapezoidal (last L columns of K-by-K upper triangular)

             If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K.

             If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K.

             If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L.

             If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.

Author

       Generated automatically by Doxygen for LAPACK from the source code.