Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       lantb - lantb: triangular matrix, banded

SYNOPSIS

   Functions
       real function clantb (norm, uplo, diag, n, k, ab, ldab, work)
           CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,
           or the element of largest absolute value of a triangular band matrix.
       double precision function dlantb (norm, uplo, diag, n, k, ab, ldab, work)
           DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,
           or the element of largest absolute value of a triangular band matrix.
       real function slantb (norm, uplo, diag, n, k, ab, ldab, work)
           SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,
           or the element of largest absolute value of a triangular band matrix.
       double precision function zlantb (norm, uplo, diag, n, k, ab, ldab, work)
           ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,
           or the element of largest absolute value of a triangular band matrix.

Detailed Description

Function Documentation

   real function clantb (character norm, character uplo, character diag, integer n, integer k,
       complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)
       CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
       the element of largest absolute value of a triangular band matrix.

       Purpose:

            CLANTB  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the element of  largest absolute value  of an
            n by n triangular band matrix A,  with ( k + 1 ) diagonals.

       Returns
           CLANTB

               CLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

       Parameters
           NORM

                     NORM is CHARACTER*1
                     Specifies the value to be returned in CLANTB as described
                     above.

           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the matrix A is upper or lower triangular.
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           DIAG

                     DIAG is CHARACTER*1
                     Specifies whether or not the matrix A is unit triangular.
                     = 'N':  Non-unit triangular
                     = 'U':  Unit triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, CLANTB is
                     set to zero.

           K

                     K is INTEGER
                     The number of super-diagonals of the matrix A if UPLO = 'U',
                     or the number of sub-diagonals of the matrix A if UPLO = 'L'.
                     K >= 0.

           AB

                     AB is COMPLEX array, dimension (LDAB,N)
                     The upper or lower triangular band matrix A, stored in the
                     first k+1 rows of AB.  The j-th column of A is stored
                     in the j-th column of the array AB as follows:
                     if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
                     Note that when DIAG = 'U', the elements of the array AB
                     corresponding to the diagonal elements of the matrix A are
                     not referenced, but are assumed to be one.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= K+1.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK)),
                     where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     referenced.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   double precision function dlantb (character norm, character uplo, character diag, integer n,
       integer k, double precision, dimension( ldab, * ) ab, integer ldab, double precision,
       dimension( * ) work)
       DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
       the element of largest absolute value of a triangular band matrix.

       Purpose:

            DLANTB  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the element of  largest absolute value  of an
            n by n triangular band matrix A,  with ( k + 1 ) diagonals.

       Returns
           DLANTB

               DLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

       Parameters
           NORM

                     NORM is CHARACTER*1
                     Specifies the value to be returned in DLANTB as described
                     above.

           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the matrix A is upper or lower triangular.
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           DIAG

                     DIAG is CHARACTER*1
                     Specifies whether or not the matrix A is unit triangular.
                     = 'N':  Non-unit triangular
                     = 'U':  Unit triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, DLANTB is
                     set to zero.

           K

                     K is INTEGER
                     The number of super-diagonals of the matrix A if UPLO = 'U',
                     or the number of sub-diagonals of the matrix A if UPLO = 'L'.
                     K >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     The upper or lower triangular band matrix A, stored in the
                     first k+1 rows of AB.  The j-th column of A is stored
                     in the j-th column of the array AB as follows:
                     if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
                     Note that when DIAG = 'U', the elements of the array AB
                     corresponding to the diagonal elements of the matrix A are
                     not referenced, but are assumed to be one.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= K+1.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                     where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     referenced.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   real function slantb (character norm, character uplo, character diag, integer n, integer k,
       real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) work)
       SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
       the element of largest absolute value of a triangular band matrix.

       Purpose:

            SLANTB  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the element of  largest absolute value  of an
            n by n triangular band matrix A,  with ( k + 1 ) diagonals.

       Returns
           SLANTB

               SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

       Parameters
           NORM

                     NORM is CHARACTER*1
                     Specifies the value to be returned in SLANTB as described
                     above.

           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the matrix A is upper or lower triangular.
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           DIAG

                     DIAG is CHARACTER*1
                     Specifies whether or not the matrix A is unit triangular.
                     = 'N':  Non-unit triangular
                     = 'U':  Unit triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, SLANTB is
                     set to zero.

           K

                     K is INTEGER
                     The number of super-diagonals of the matrix A if UPLO = 'U',
                     or the number of sub-diagonals of the matrix A if UPLO = 'L'.
                     K >= 0.

           AB

                     AB is REAL array, dimension (LDAB,N)
                     The upper or lower triangular band matrix A, stored in the
                     first k+1 rows of AB.  The j-th column of A is stored
                     in the j-th column of the array AB as follows:
                     if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
                     Note that when DIAG = 'U', the elements of the array AB
                     corresponding to the diagonal elements of the matrix A are
                     not referenced, but are assumed to be one.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= K+1.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK)),
                     where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     referenced.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   double precision function zlantb (character norm, character uplo, character diag, integer n,
       integer k, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension(
       * ) work)
       ZLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or
       the element of largest absolute value of a triangular band matrix.

       Purpose:

            ZLANTB  returns the value of the one norm,  or the Frobenius norm, or
            the  infinity norm,  or the element of  largest absolute value  of an
            n by n triangular band matrix A,  with ( k + 1 ) diagonals.

       Returns
           ZLANTB

               ZLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
                        (
                        ( norm1(A),         NORM = '1', 'O' or 'o'
                        (
                        ( normI(A),         NORM = 'I' or 'i'
                        (
                        ( normF(A),         NORM = 'F', 'f', 'E' or 'e'

            where  norm1  denotes the  one norm of a matrix (maximum column sum),
            normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
            normF  denotes the  Frobenius norm of a matrix (square root of sum of
            squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.

       Parameters
           NORM

                     NORM is CHARACTER*1
                     Specifies the value to be returned in ZLANTB as described
                     above.

           UPLO

                     UPLO is CHARACTER*1
                     Specifies whether the matrix A is upper or lower triangular.
                     = 'U':  Upper triangular
                     = 'L':  Lower triangular

           DIAG

                     DIAG is CHARACTER*1
                     Specifies whether or not the matrix A is unit triangular.
                     = 'N':  Non-unit triangular
                     = 'U':  Unit triangular

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.  When N = 0, ZLANTB is
                     set to zero.

           K

                     K is INTEGER
                     The number of super-diagonals of the matrix A if UPLO = 'U',
                     or the number of sub-diagonals of the matrix A if UPLO = 'L'.
                     K >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB,N)
                     The upper or lower triangular band matrix A, stored in the
                     first k+1 rows of AB.  The j-th column of A is stored
                     in the j-th column of the array AB as follows:
                     if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
                     Note that when DIAG = 'U', the elements of the array AB
                     corresponding to the diagonal elements of the matrix A are
                     not referenced, but are assumed to be one.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= K+1.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
                     where LWORK >= N when NORM = 'I'; otherwise, WORK is not
                     referenced.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.