Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       hbtrd - {hb,sb}trd: reduction to tridiagonal

SYNOPSIS

   Functions
       subroutine chbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
           CHBTRD
       subroutine dsbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
           DSBTRD
       subroutine ssbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
           SSBTRD
       subroutine zhbtrd (vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
           ZHBTRD

Detailed Description

Function Documentation

   subroutine chbtrd (character vect, character uplo, integer n, integer kd, complex, dimension(
       ldab, * ) ab, integer ldab, real, dimension( * ) d, real, dimension( * ) e, complex,
       dimension( ldq, * ) q, integer ldq, complex, dimension( * ) work, integer info)
       CHBTRD

       Purpose:

            CHBTRD reduces a complex Hermitian band matrix A to real symmetric
            tridiagonal form T by a unitary similarity transformation:
            Q**H * A * Q = T.

       Parameters
           VECT

                     VECT is CHARACTER*1
                     = 'N':  do not form Q;
                     = 'V':  form Q;
                     = 'U':  update a matrix X, by forming X*Q.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is COMPLEX array, dimension (LDAB,N)
                     On entry, the upper or lower triangle of the Hermitian band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     On exit, the diagonal elements of AB are overwritten by the
                     diagonal elements of the tridiagonal matrix T; if KD > 0, the
                     elements on the first superdiagonal (if UPLO = 'U') or the
                     first subdiagonal (if UPLO = 'L') are overwritten by the
                     off-diagonal elements of T; the rest of AB is overwritten by
                     values generated during the reduction.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD+1.

           D

                     D is REAL array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T.

           E

                     E is REAL array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

           Q

                     Q is COMPLEX array, dimension (LDQ,N)
                     On entry, if VECT = 'U', then Q must contain an N-by-N
                     matrix X; if VECT = 'N' or 'V', then Q need not be set.

                     On exit:
                     if VECT = 'V', Q contains the N-by-N unitary matrix Q;
                     if VECT = 'U', Q contains the product X*Q;
                     if VECT = 'N', the array Q is not referenced.

           LDQ

                     LDQ is INTEGER
                     The leading dimension of the array Q.
                     LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

           WORK

                     WORK is COMPLEX array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Modified by Linda Kaufman, Bell Labs.

   subroutine dsbtrd (character vect, character uplo, integer n, integer kd, double precision,
       dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) d, double
       precision, dimension( * ) e, double precision, dimension( ldq, * ) q, integer ldq, double
       precision, dimension( * ) work, integer info)
       DSBTRD

       Purpose:

            DSBTRD reduces a real symmetric band matrix A to symmetric
            tridiagonal form T by an orthogonal similarity transformation:
            Q**T * A * Q = T.

       Parameters
           VECT

                     VECT is CHARACTER*1
                     = 'N':  do not form Q;
                     = 'V':  form Q;
                     = 'U':  update a matrix X, by forming X*Q.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is DOUBLE PRECISION array, dimension (LDAB,N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     On exit, the diagonal elements of AB are overwritten by the
                     diagonal elements of the tridiagonal matrix T; if KD > 0, the
                     elements on the first superdiagonal (if UPLO = 'U') or the
                     first subdiagonal (if UPLO = 'L') are overwritten by the
                     off-diagonal elements of T; the rest of AB is overwritten by
                     values generated during the reduction.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD+1.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T.

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

           Q

                     Q is DOUBLE PRECISION array, dimension (LDQ,N)
                     On entry, if VECT = 'U', then Q must contain an N-by-N
                     matrix X; if VECT = 'N' or 'V', then Q need not be set.

                     On exit:
                     if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
                     if VECT = 'U', Q contains the product X*Q;
                     if VECT = 'N', the array Q is not referenced.

           LDQ

                     LDQ is INTEGER
                     The leading dimension of the array Q.
                     LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Modified by Linda Kaufman, Bell Labs.

   subroutine ssbtrd (character vect, character uplo, integer n, integer kd, real, dimension(
       ldab, * ) ab, integer ldab, real, dimension( * ) d, real, dimension( * ) e, real,
       dimension( ldq, * ) q, integer ldq, real, dimension( * ) work, integer info)
       SSBTRD

       Purpose:

            SSBTRD reduces a real symmetric band matrix A to symmetric
            tridiagonal form T by an orthogonal similarity transformation:
            Q**T * A * Q = T.

       Parameters
           VECT

                     VECT is CHARACTER*1
                     = 'N':  do not form Q;
                     = 'V':  form Q;
                     = 'U':  update a matrix X, by forming X*Q.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is REAL array, dimension (LDAB,N)
                     On entry, the upper or lower triangle of the symmetric band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     On exit, the diagonal elements of AB are overwritten by the
                     diagonal elements of the tridiagonal matrix T; if KD > 0, the
                     elements on the first superdiagonal (if UPLO = 'U') or the
                     first subdiagonal (if UPLO = 'L') are overwritten by the
                     off-diagonal elements of T; the rest of AB is overwritten by
                     values generated during the reduction.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD+1.

           D

                     D is REAL array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T.

           E

                     E is REAL array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

           Q

                     Q is REAL array, dimension (LDQ,N)
                     On entry, if VECT = 'U', then Q must contain an N-by-N
                     matrix X; if VECT = 'N' or 'V', then Q need not be set.

                     On exit:
                     if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
                     if VECT = 'U', Q contains the product X*Q;
                     if VECT = 'N', the array Q is not referenced.

           LDQ

                     LDQ is INTEGER
                     The leading dimension of the array Q.
                     LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

           WORK

                     WORK is REAL array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Modified by Linda Kaufman, Bell Labs.

   subroutine zhbtrd (character vect, character uplo, integer n, integer kd, complex*16,
       dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) d, double
       precision, dimension( * ) e, complex*16, dimension( ldq, * ) q, integer ldq, complex*16,
       dimension( * ) work, integer info)
       ZHBTRD

       Purpose:

            ZHBTRD reduces a complex Hermitian band matrix A to real symmetric
            tridiagonal form T by a unitary similarity transformation:
            Q**H * A * Q = T.

       Parameters
           VECT

                     VECT is CHARACTER*1
                     = 'N':  do not form Q;
                     = 'V':  form Q;
                     = 'U':  update a matrix X, by forming X*Q.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangle of A is stored;
                     = 'L':  Lower triangle of A is stored.

           N

                     N is INTEGER
                     The order of the matrix A.  N >= 0.

           KD

                     KD is INTEGER
                     The number of superdiagonals of the matrix A if UPLO = 'U',
                     or the number of subdiagonals if UPLO = 'L'.  KD >= 0.

           AB

                     AB is COMPLEX*16 array, dimension (LDAB,N)
                     On entry, the upper or lower triangle of the Hermitian band
                     matrix A, stored in the first KD+1 rows of the array.  The
                     j-th column of A is stored in the j-th column of the array AB
                     as follows:
                     if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
                     if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
                     On exit, the diagonal elements of AB are overwritten by the
                     diagonal elements of the tridiagonal matrix T; if KD > 0, the
                     elements on the first superdiagonal (if UPLO = 'U') or the
                     first subdiagonal (if UPLO = 'L') are overwritten by the
                     off-diagonal elements of T; the rest of AB is overwritten by
                     values generated during the reduction.

           LDAB

                     LDAB is INTEGER
                     The leading dimension of the array AB.  LDAB >= KD+1.

           D

                     D is DOUBLE PRECISION array, dimension (N)
                     The diagonal elements of the tridiagonal matrix T.

           E

                     E is DOUBLE PRECISION array, dimension (N-1)
                     The off-diagonal elements of the tridiagonal matrix T:
                     E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.

           Q

                     Q is COMPLEX*16 array, dimension (LDQ,N)
                     On entry, if VECT = 'U', then Q must contain an N-by-N
                     matrix X; if VECT = 'N' or 'V', then Q need not be set.

                     On exit:
                     if VECT = 'V', Q contains the N-by-N unitary matrix Q;
                     if VECT = 'U', Q contains the product X*Q;
                     if VECT = 'N', the array Q is not referenced.

           LDQ

                     LDQ is INTEGER
                     The leading dimension of the array Q.
                     LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.

           WORK

                     WORK is COMPLEX*16 array, dimension (N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Modified by Linda Kaufman, Bell Labs.

Author

       Generated automatically by Doxygen for LAPACK from the source code.