Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       hpmv - {hp,sp}mv: Hermitian/symmetric matrix-vector multiply

SYNOPSIS

   Functions
       subroutine chpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           CHPMV
       subroutine dspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           DSPMV
       subroutine sspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           SSPMV
       subroutine zhpmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           ZHPMV
       subroutine cspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           CSPMV computes a matrix-vector product for complex vectors using a complex symmetric
           packed matrix
       subroutine zspmv (uplo, n, alpha, ap, x, incx, beta, y, incy)
           ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric
           packed matrix

Detailed Description

Function Documentation

   subroutine chpmv (character uplo, integer n, complex alpha, complex, dimension(*) ap, complex,
       dimension(*) x, integer incx, complex beta, complex, dimension(*) y, integer incy)
       CHPMV

       Purpose:

            CHPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n hermitian matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           ALPHA

                     ALPHA is COMPLEX
                      On entry, ALPHA specifies the scalar alpha.

           AP

                     AP is COMPLEX array, dimension at least
                      ( ( n*( n + 1 ) )/2 ).
                      Before entry with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the hermitian matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the hermitian matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.
                      Note that the imaginary parts of the diagonal elements need
                      not be set and are assumed to be zero.

           X

                     X is COMPLEX array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

           BETA

                     BETA is COMPLEX
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.

           Y

                     Y is COMPLEX array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.
             The vector and matrix arguments are not referenced when N = 0, or M = 0

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine cspmv (character uplo, integer n, complex alpha, complex, dimension( * ) ap,
       complex, dimension( * ) x, integer incx, complex beta, complex, dimension( * ) y, integer
       incy)
       CSPMV computes a matrix-vector product for complex vectors using a complex symmetric
       packed matrix

       Purpose:

            CSPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n symmetric matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

                      Unchanged on exit.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.
                      Unchanged on exit.

           ALPHA

                     ALPHA is COMPLEX
                      On entry, ALPHA specifies the scalar alpha.
                      Unchanged on exit.

           AP

                     AP is COMPLEX array, dimension at least
                      ( ( N*( N + 1 ) )/2 ).
                      Before entry, with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry, with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.
                      Unchanged on exit.

           X

                     X is COMPLEX array, dimension at least
                      ( 1 + ( N - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the N-
                      element vector x.
                      Unchanged on exit.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.
                      Unchanged on exit.

           BETA

                     BETA is COMPLEX
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.
                      Unchanged on exit.

           Y

                     Y is COMPLEX array, dimension at least
                      ( 1 + ( N - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.
                      Unchanged on exit.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dspmv (character uplo, integer n, double precision alpha, double precision,
       dimension(*) ap, double precision, dimension(*) x, integer incx, double precision beta,
       double precision, dimension(*) y, integer incy)
       DSPMV

       Purpose:

            DSPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n symmetric matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           ALPHA

                     ALPHA is DOUBLE PRECISION.
                      On entry, ALPHA specifies the scalar alpha.

           AP

                     AP is DOUBLE PRECISION array, dimension at least
                      ( ( n*( n + 1 ) )/2 ).
                      Before entry with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.

           X

                     X is DOUBLE PRECISION array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

           BETA

                     BETA is DOUBLE PRECISION.
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.

           Y

                     Y is DOUBLE PRECISION array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.
             The vector and matrix arguments are not referenced when N = 0, or M = 0

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine sspmv (character uplo, integer n, real alpha, real, dimension(*) ap, real,
       dimension(*) x, integer incx, real beta, real, dimension(*) y, integer incy)
       SSPMV

       Purpose:

            SSPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n symmetric matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           ALPHA

                     ALPHA is REAL
                      On entry, ALPHA specifies the scalar alpha.

           AP

                     AP is REAL array, dimension at least
                      ( ( n*( n + 1 ) )/2 ).
                      Before entry with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.

           X

                     X is REAL array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

           BETA

                     BETA is REAL
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.

           Y

                     Y is REAL array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.
             The vector and matrix arguments are not referenced when N = 0, or M = 0

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine zhpmv (character uplo, integer n, complex*16 alpha, complex*16, dimension(*) ap,
       complex*16, dimension(*) x, integer incx, complex*16 beta, complex*16, dimension(*) y,
       integer incy)
       ZHPMV

       Purpose:

            ZHPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n hermitian matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.

           ALPHA

                     ALPHA is COMPLEX*16
                      On entry, ALPHA specifies the scalar alpha.

           AP

                     AP is COMPLEX*16 array, dimension at least
                      ( ( n*( n + 1 ) )/2 ).
                      Before entry with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the hermitian matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the hermitian matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.
                      Note that the imaginary parts of the diagonal elements need
                      not be set and are assumed to be zero.

           X

                     X is COMPLEX*16 array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the n
                      element vector x.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.

           BETA

                     BETA is COMPLEX*16
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.

           Y

                     Y is COMPLEX*16 array, dimension at least
                      ( 1 + ( n - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Further Details:

             Level 2 Blas routine.
             The vector and matrix arguments are not referenced when N = 0, or M = 0

             -- Written on 22-October-1986.
                Jack Dongarra, Argonne National Lab.
                Jeremy Du Croz, Nag Central Office.
                Sven Hammarling, Nag Central Office.
                Richard Hanson, Sandia National Labs.

   subroutine zspmv (character uplo, integer n, complex*16 alpha, complex*16, dimension( * ) ap,
       complex*16, dimension( * ) x, integer incx, complex*16 beta, complex*16, dimension( * ) y,
       integer incy)
       ZSPMV computes a matrix-vector product for complex vectors using a complex symmetric
       packed matrix

       Purpose:

            ZSPMV  performs the matrix-vector operation

               y := alpha*A*x + beta*y,

            where alpha and beta are scalars, x and y are n element vectors and
            A is an n by n symmetric matrix, supplied in packed form.

       Parameters
           UPLO

                     UPLO is CHARACTER*1
                      On entry, UPLO specifies whether the upper or lower
                      triangular part of the matrix A is supplied in the packed
                      array AP as follows:

                         UPLO = 'U' or 'u'   The upper triangular part of A is
                                             supplied in AP.

                         UPLO = 'L' or 'l'   The lower triangular part of A is
                                             supplied in AP.

                      Unchanged on exit.

           N

                     N is INTEGER
                      On entry, N specifies the order of the matrix A.
                      N must be at least zero.
                      Unchanged on exit.

           ALPHA

                     ALPHA is COMPLEX*16
                      On entry, ALPHA specifies the scalar alpha.
                      Unchanged on exit.

           AP

                     AP is COMPLEX*16 array, dimension at least
                      ( ( N*( N + 1 ) )/2 ).
                      Before entry, with UPLO = 'U' or 'u', the array AP must
                      contain the upper triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
                      and a( 2, 2 ) respectively, and so on.
                      Before entry, with UPLO = 'L' or 'l', the array AP must
                      contain the lower triangular part of the symmetric matrix
                      packed sequentially, column by column, so that AP( 1 )
                      contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
                      and a( 3, 1 ) respectively, and so on.
                      Unchanged on exit.

           X

                     X is COMPLEX*16 array, dimension at least
                      ( 1 + ( N - 1 )*abs( INCX ) ).
                      Before entry, the incremented array X must contain the N-
                      element vector x.
                      Unchanged on exit.

           INCX

                     INCX is INTEGER
                      On entry, INCX specifies the increment for the elements of
                      X. INCX must not be zero.
                      Unchanged on exit.

           BETA

                     BETA is COMPLEX*16
                      On entry, BETA specifies the scalar beta. When BETA is
                      supplied as zero then Y need not be set on input.
                      Unchanged on exit.

           Y

                     Y is COMPLEX*16 array, dimension at least
                      ( 1 + ( N - 1 )*abs( INCY ) ).
                      Before entry, the incremented array Y must contain the n
                      element vector y. On exit, Y is overwritten by the updated
                      vector y.

           INCY

                     INCY is INTEGER
                      On entry, INCY specifies the increment for the elements of
                      Y. INCY must not be zero.
                      Unchanged on exit.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.