Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       geev - geev: eig

SYNOPSIS

   Functions
       subroutine cgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
           info)
            CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for GE matrices
       subroutine dgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
            DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for GE matrices
       subroutine sgeev (jobvl, jobvr, n, a, lda, wr, wi, vl, ldvl, vr, ldvr, work, lwork, info)
            SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for GE matrices
       subroutine zgeev (jobvl, jobvr, n, a, lda, w, vl, ldvl, vr, ldvr, work, lwork, rwork,
           info)
            ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors
           for GE matrices

Detailed Description

Function Documentation

   subroutine cgeev (character jobvl, character jobvr, integer n, complex, dimension( lda, * ) a,
       integer lda, complex, dimension( * ) w, complex, dimension( ldvl, * ) vl, integer ldvl,
       complex, dimension( ldvr, * ) vr, integer ldvr, complex, dimension( * ) work, integer
       lwork, real, dimension( * ) rwork, integer info)
        CGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE
       matrices

       Purpose:

            CGEEV computes for an N-by-N complex nonsymmetric matrix A, the
            eigenvalues and, optionally, the left and/or right eigenvectors.

            The right eigenvector v(j) of A satisfies
                             A * v(j) = lambda(j) * v(j)
            where lambda(j) is its eigenvalue.
            The left eigenvector u(j) of A satisfies
                          u(j)**H * A = lambda(j) * u(j)**H
            where u(j)**H denotes the conjugate transpose of u(j).

            The computed eigenvectors are normalized to have Euclidean norm
            equal to 1 and largest component real.

       Parameters
           JOBVL

                     JOBVL is CHARACTER*1
                     = 'N': left eigenvectors of A are not computed;
                     = 'V': left eigenvectors of are computed.

           JOBVR

                     JOBVR is CHARACTER*1
                     = 'N': right eigenvectors of A are not computed;
                     = 'V': right eigenvectors of A are computed.

           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is COMPLEX array, dimension (LDA,N)
                     On entry, the N-by-N matrix A.
                     On exit, A has been overwritten.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is COMPLEX array, dimension (N)
                     W contains the computed eigenvalues.

           VL

                     VL is COMPLEX array, dimension (LDVL,N)
                     If JOBVL = 'V', the left eigenvectors u(j) are stored one
                     after another in the columns of VL, in the same order
                     as their eigenvalues.
                     If JOBVL = 'N', VL is not referenced.
                     u(j) = VL(:,j), the j-th column of VL.

           LDVL

                     LDVL is INTEGER
                     The leading dimension of the array VL.  LDVL >= 1; if
                     JOBVL = 'V', LDVL >= N.

           VR

                     VR is COMPLEX array, dimension (LDVR,N)
                     If JOBVR = 'V', the right eigenvectors v(j) are stored one
                     after another in the columns of VR, in the same order
                     as their eigenvalues.
                     If JOBVR = 'N', VR is not referenced.
                     v(j) = VR(:,j), the j-th column of VR.

           LDVR

                     LDVR is INTEGER
                     The leading dimension of the array VR.  LDVR >= 1; if
                     JOBVR = 'V', LDVR >= N.

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,2*N).
                     For good performance, LWORK must generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           RWORK

                     RWORK is REAL array, dimension (2*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the QR algorithm failed to compute all the
                           eigenvalues, and no eigenvectors have been computed;
                           elements i+1:N of W contain eigenvalues which have
                           converged.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dgeev (character jobvl, character jobvr, integer n, double precision, dimension(
       lda, * ) a, integer lda, double precision, dimension( * ) wr, double precision, dimension(
       * ) wi, double precision, dimension( ldvl, * ) vl, integer ldvl, double precision,
       dimension( ldvr, * ) vr, integer ldvr, double precision, dimension( * ) work, integer
       lwork, integer info)
        DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE
       matrices

       Purpose:

            DGEEV computes for an N-by-N real nonsymmetric matrix A, the
            eigenvalues and, optionally, the left and/or right eigenvectors.

            The right eigenvector v(j) of A satisfies
                             A * v(j) = lambda(j) * v(j)
            where lambda(j) is its eigenvalue.
            The left eigenvector u(j) of A satisfies
                          u(j)**H * A = lambda(j) * u(j)**H
            where u(j)**H denotes the conjugate-transpose of u(j).

            The computed eigenvectors are normalized to have Euclidean norm
            equal to 1 and largest component real.

       Parameters
           JOBVL

                     JOBVL is CHARACTER*1
                     = 'N': left eigenvectors of A are not computed;
                     = 'V': left eigenvectors of A are computed.

           JOBVR

                     JOBVR is CHARACTER*1
                     = 'N': right eigenvectors of A are not computed;
                     = 'V': right eigenvectors of A are computed.

           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is DOUBLE PRECISION array, dimension (LDA,N)
                     On entry, the N-by-N matrix A.
                     On exit, A has been overwritten.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           WR

                     WR is DOUBLE PRECISION array, dimension (N)

           WI

                     WI is DOUBLE PRECISION array, dimension (N)
                     WR and WI contain the real and imaginary parts,
                     respectively, of the computed eigenvalues.  Complex
                     conjugate pairs of eigenvalues appear consecutively
                     with the eigenvalue having the positive imaginary part
                     first.

           VL

                     VL is DOUBLE PRECISION array, dimension (LDVL,N)
                     If JOBVL = 'V', the left eigenvectors u(j) are stored one
                     after another in the columns of VL, in the same order
                     as their eigenvalues.
                     If JOBVL = 'N', VL is not referenced.
                     If the j-th eigenvalue is real, then u(j) = VL(:,j),
                     the j-th column of VL.
                     If the j-th and (j+1)-st eigenvalues form a complex
                     conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
                     u(j+1) = VL(:,j) - i*VL(:,j+1).

           LDVL

                     LDVL is INTEGER
                     The leading dimension of the array VL.  LDVL >= 1; if
                     JOBVL = 'V', LDVL >= N.

           VR

                     VR is DOUBLE PRECISION array, dimension (LDVR,N)
                     If JOBVR = 'V', the right eigenvectors v(j) are stored one
                     after another in the columns of VR, in the same order
                     as their eigenvalues.
                     If JOBVR = 'N', VR is not referenced.
                     If the j-th eigenvalue is real, then v(j) = VR(:,j),
                     the j-th column of VR.
                     If the j-th and (j+1)-st eigenvalues form a complex
                     conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
                     v(j+1) = VR(:,j) - i*VR(:,j+1).

           LDVR

                     LDVR is INTEGER
                     The leading dimension of the array VR.  LDVR >= 1; if
                     JOBVR = 'V', LDVR >= N.

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,3*N), and
                     if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
                     performance, LWORK must generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the QR algorithm failed to compute all the
                           eigenvalues, and no eigenvectors have been computed;
                           elements i+1:N of WR and WI contain eigenvalues which
                           have converged.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sgeev (character jobvl, character jobvr, integer n, real, dimension( lda, * ) a,
       integer lda, real, dimension( * ) wr, real, dimension( * ) wi, real, dimension( ldvl, * )
       vl, integer ldvl, real, dimension( ldvr, * ) vr, integer ldvr, real, dimension( * ) work,
       integer lwork, integer info)
        SGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE
       matrices

       Purpose:

            SGEEV computes for an N-by-N real nonsymmetric matrix A, the
            eigenvalues and, optionally, the left and/or right eigenvectors.

            The right eigenvector v(j) of A satisfies
                             A * v(j) = lambda(j) * v(j)
            where lambda(j) is its eigenvalue.
            The left eigenvector u(j) of A satisfies
                          u(j)**H * A = lambda(j) * u(j)**H
            where u(j)**H denotes the conjugate-transpose of u(j).

            The computed eigenvectors are normalized to have Euclidean norm
            equal to 1 and largest component real.

       Parameters
           JOBVL

                     JOBVL is CHARACTER*1
                     = 'N': left eigenvectors of A are not computed;
                     = 'V': left eigenvectors of A are computed.

           JOBVR

                     JOBVR is CHARACTER*1
                     = 'N': right eigenvectors of A are not computed;
                     = 'V': right eigenvectors of A are computed.

           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is REAL array, dimension (LDA,N)
                     On entry, the N-by-N matrix A.
                     On exit, A has been overwritten.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           WR

                     WR is REAL array, dimension (N)

           WI

                     WI is REAL array, dimension (N)
                     WR and WI contain the real and imaginary parts,
                     respectively, of the computed eigenvalues.  Complex
                     conjugate pairs of eigenvalues appear consecutively
                     with the eigenvalue having the positive imaginary part
                     first.

           VL

                     VL is REAL array, dimension (LDVL,N)
                     If JOBVL = 'V', the left eigenvectors u(j) are stored one
                     after another in the columns of VL, in the same order
                     as their eigenvalues.
                     If JOBVL = 'N', VL is not referenced.
                     If the j-th eigenvalue is real, then u(j) = VL(:,j),
                     the j-th column of VL.
                     If the j-th and (j+1)-st eigenvalues form a complex
                     conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
                     u(j+1) = VL(:,j) - i*VL(:,j+1).

           LDVL

                     LDVL is INTEGER
                     The leading dimension of the array VL.  LDVL >= 1; if
                     JOBVL = 'V', LDVL >= N.

           VR

                     VR is REAL array, dimension (LDVR,N)
                     If JOBVR = 'V', the right eigenvectors v(j) are stored one
                     after another in the columns of VR, in the same order
                     as their eigenvalues.
                     If JOBVR = 'N', VR is not referenced.
                     If the j-th eigenvalue is real, then v(j) = VR(:,j),
                     the j-th column of VR.
                     If the j-th and (j+1)-st eigenvalues form a complex
                     conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
                     v(j+1) = VR(:,j) - i*VR(:,j+1).

           LDVR

                     LDVR is INTEGER
                     The leading dimension of the array VR.  LDVR >= 1; if
                     JOBVR = 'V', LDVR >= N.

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,3*N), and
                     if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
                     performance, LWORK must generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the QR algorithm failed to compute all the
                           eigenvalues, and no eigenvectors have been computed;
                           elements i+1:N of WR and WI contain eigenvalues which
                           have converged.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zgeev (character jobvl, character jobvr, integer n, complex*16, dimension( lda, * )
       a, integer lda, complex*16, dimension( * ) w, complex*16, dimension( ldvl, * ) vl, integer
       ldvl, complex*16, dimension( ldvr, * ) vr, integer ldvr, complex*16, dimension( * ) work,
       integer lwork, double precision, dimension( * ) rwork, integer info)
        ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE
       matrices

       Purpose:

            ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
            eigenvalues and, optionally, the left and/or right eigenvectors.

            The right eigenvector v(j) of A satisfies
                             A * v(j) = lambda(j) * v(j)
            where lambda(j) is its eigenvalue.
            The left eigenvector u(j) of A satisfies
                          u(j)**H * A = lambda(j) * u(j)**H
            where u(j)**H denotes the conjugate transpose of u(j).

            The computed eigenvectors are normalized to have Euclidean norm
            equal to 1 and largest component real.

       Parameters
           JOBVL

                     JOBVL is CHARACTER*1
                     = 'N': left eigenvectors of A are not computed;
                     = 'V': left eigenvectors of are computed.

           JOBVR

                     JOBVR is CHARACTER*1
                     = 'N': right eigenvectors of A are not computed;
                     = 'V': right eigenvectors of A are computed.

           N

                     N is INTEGER
                     The order of the matrix A. N >= 0.

           A

                     A is COMPLEX*16 array, dimension (LDA,N)
                     On entry, the N-by-N matrix A.
                     On exit, A has been overwritten.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A.  LDA >= max(1,N).

           W

                     W is COMPLEX*16 array, dimension (N)
                     W contains the computed eigenvalues.

           VL

                     VL is COMPLEX*16 array, dimension (LDVL,N)
                     If JOBVL = 'V', the left eigenvectors u(j) are stored one
                     after another in the columns of VL, in the same order
                     as their eigenvalues.
                     If JOBVL = 'N', VL is not referenced.
                     u(j) = VL(:,j), the j-th column of VL.

           LDVL

                     LDVL is INTEGER
                     The leading dimension of the array VL.  LDVL >= 1; if
                     JOBVL = 'V', LDVL >= N.

           VR

                     VR is COMPLEX*16 array, dimension (LDVR,N)
                     If JOBVR = 'V', the right eigenvectors v(j) are stored one
                     after another in the columns of VR, in the same order
                     as their eigenvalues.
                     If JOBVR = 'N', VR is not referenced.
                     v(j) = VR(:,j), the j-th column of VR.

           LDVR

                     LDVR is INTEGER
                     The leading dimension of the array VR.  LDVR >= 1; if
                     JOBVR = 'V', LDVR >= N.

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.  LWORK >= max(1,2*N).
                     For good performance, LWORK must generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (2*N)

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value.
                     > 0:  if INFO = i, the QR algorithm failed to compute all the
                           eigenvalues, and no eigenvectors have been computed;
                           elements i+1:N of W contain eigenvalues which have
                           converged.

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.