Provided by: liblapack-doc_3.12.0-3build1_all bug

NAME

       unmrq - {un,or}mrq: multiply by Q from gerqf

SYNOPSIS

   Functions
       subroutine cunmrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
           CUNMRQ
       subroutine dormrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
           DORMRQ
       subroutine sormrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
           SORMRQ
       subroutine zunmrq (side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
           ZUNMRQ

Detailed Description

Function Documentation

   subroutine cunmrq (character side, character trans, integer m, integer n, integer k, complex,
       dimension( lda, * ) a, integer lda, complex, dimension( * ) tau, complex, dimension( ldc,
       * ) c, integer ldc, complex, dimension( * ) work, integer lwork, integer info)
       CUNMRQ

       Purpose:

            CUNMRQ overwrites the general complex M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q * C          C * Q
            TRANS = 'C':      Q**H * C       C * Q**H

            where Q is a complex unitary matrix defined as the product of k
            elementary reflectors

                  Q = H(1)**H H(2)**H . . . H(k)**H

            as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left;
                     = 'R': apply Q or Q**H from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N':  No transpose, apply Q;
                     = 'C':  Conjugate transpose, apply Q**H.

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is COMPLEX array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     CGERQF in the last k rows of its array argument A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is COMPLEX array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by CGERQF.

           C

                     C is COMPLEX array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If SIDE = 'L', LWORK >= max(1,N);
                     if SIDE = 'R', LWORK >= max(1,M).
                     For good performance, LWORK should generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine dormrq (character side, character trans, integer m, integer n, integer k, double
       precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau,
       double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * )
       work, integer lwork, integer info)
       DORMRQ

       Purpose:

            DORMRQ overwrites the general real M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q * C          C * Q
            TRANS = 'T':      Q**T * C       C * Q**T

            where Q is a real orthogonal matrix defined as the product of k
            elementary reflectors

                  Q = H(1) H(2) . . . H(k)

            as returned by DGERQF. Q is of order M if SIDE = 'L' and of order N
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**T from the Left;
                     = 'R': apply Q or Q**T from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N':  No transpose, apply Q;
                     = 'T':  Transpose, apply Q**T.

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is DOUBLE PRECISION array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     DGERQF in the last k rows of its array argument A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is DOUBLE PRECISION array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by DGERQF.

           C

                     C is DOUBLE PRECISION array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If SIDE = 'L', LWORK >= max(1,N);
                     if SIDE = 'R', LWORK >= max(1,M).
                     For good performance, LWORK should generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine sormrq (character side, character trans, integer m, integer n, integer k, real,
       dimension( lda, * ) a, integer lda, real, dimension( * ) tau, real, dimension( ldc, * ) c,
       integer ldc, real, dimension( * ) work, integer lwork, integer info)
       SORMRQ

       Purpose:

            SORMRQ overwrites the general real M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q * C          C * Q
            TRANS = 'T':      Q**T * C       C * Q**T

            where Q is a real orthogonal matrix defined as the product of k
            elementary reflectors

                  Q = H(1) H(2) . . . H(k)

            as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**T from the Left;
                     = 'R': apply Q or Q**T from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N':  No transpose, apply Q;
                     = 'T':  Transpose, apply Q**T.

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is REAL array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     SGERQF in the last k rows of its array argument A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is REAL array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by SGERQF.

           C

                     C is REAL array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is REAL array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If SIDE = 'L', LWORK >= max(1,N);
                     if SIDE = 'R', LWORK >= max(1,M).
                     For good performance, LWORK should generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

   subroutine zunmrq (character side, character trans, integer m, integer n, integer k,
       complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( * ) tau,
       complex*16, dimension( ldc, * ) c, integer ldc, complex*16, dimension( * ) work, integer
       lwork, integer info)
       ZUNMRQ

       Purpose:

            ZUNMRQ overwrites the general complex M-by-N matrix C with

                            SIDE = 'L'     SIDE = 'R'
            TRANS = 'N':      Q * C          C * Q
            TRANS = 'C':      Q**H * C       C * Q**H

            where Q is a complex unitary matrix defined as the product of k
            elementary reflectors

                  Q = H(1)**H H(2)**H . . . H(k)**H

            as returned by ZGERQF. Q is of order M if SIDE = 'L' and of order N
            if SIDE = 'R'.

       Parameters
           SIDE

                     SIDE is CHARACTER*1
                     = 'L': apply Q or Q**H from the Left;
                     = 'R': apply Q or Q**H from the Right.

           TRANS

                     TRANS is CHARACTER*1
                     = 'N':  No transpose, apply Q;
                     = 'C':  Conjugate transpose, apply Q**H.

           M

                     M is INTEGER
                     The number of rows of the matrix C. M >= 0.

           N

                     N is INTEGER
                     The number of columns of the matrix C. N >= 0.

           K

                     K is INTEGER
                     The number of elementary reflectors whose product defines
                     the matrix Q.
                     If SIDE = 'L', M >= K >= 0;
                     if SIDE = 'R', N >= K >= 0.

           A

                     A is COMPLEX*16 array, dimension
                                          (LDA,M) if SIDE = 'L',
                                          (LDA,N) if SIDE = 'R'
                     The i-th row must contain the vector which defines the
                     elementary reflector H(i), for i = 1,2,...,k, as returned by
                     ZGERQF in the last k rows of its array argument A.

           LDA

                     LDA is INTEGER
                     The leading dimension of the array A. LDA >= max(1,K).

           TAU

                     TAU is COMPLEX*16 array, dimension (K)
                     TAU(i) must contain the scalar factor of the elementary
                     reflector H(i), as returned by ZGERQF.

           C

                     C is COMPLEX*16 array, dimension (LDC,N)
                     On entry, the M-by-N matrix C.
                     On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

           LDC

                     LDC is INTEGER
                     The leading dimension of the array C. LDC >= max(1,M).

           WORK

                     WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
                     On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

           LWORK

                     LWORK is INTEGER
                     The dimension of the array WORK.
                     If SIDE = 'L', LWORK >= max(1,N);
                     if SIDE = 'R', LWORK >= max(1,M).
                     For good performance, LWORK should generally be larger.

                     If LWORK = -1, then a workspace query is assumed; the routine
                     only calculates the optimal size of the WORK array, returns
                     this value as the first entry of the WORK array, and no error
                     message related to LWORK is issued by XERBLA.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value

       Author
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

Author

       Generated automatically by Doxygen for LAPACK from the source code.