Provided by: liblapack-doc_3.3.1-1_all #### NAME

```       LAPACK-3  - solves a system of linear equations A*X = B with a Hermitian positive definite
matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF

```

#### SYNOPSIS

```       SUBROUTINE CPFTRS( TRANSR, UPLO, N, NRHS, A, B, LDB, INFO )

CHARACTER      TRANSR, UPLO

INTEGER        INFO, LDB, N, NRHS

COMPLEX        A( 0: * ), B( LDB, * )

```

#### PURPOSE

```       CPFTRS solves a system of linear equations A*X = B  with  a  Hermitian  positive  definite
matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPFTRF.

```

#### ARGUMENTS

```        TRANSR    (input) CHARACTER*1
= 'N':  The Normal TRANSR of RFP A is stored;
= 'C':  The Conjugate-transpose TRANSR of RFP A is stored.

UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of RFP A is stored;
= 'L':  Lower triangle of RFP A is stored.

N       (input) INTEGER
The order of the matrix A.  N >= 0.

NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.

A       (input) COMPLEX array, dimension ( N*(N+1)/2 );
The triangular factor U or L from the Cholesky factorization
of RFP A = U**H*U or RFP A = L*L**H, as computed by CPFTRF.
See note below for more details about RFP A.

B       (input/output) COMPLEX array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.

LDB     (input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).

INFO    (output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value

```

#### FURTHERDETAILS

```        We first consider Standard Packed Format when N is even.
We give an example where N = 6.
AP is Upper             AP is Lower
00 01 02 03 04 05       00
11 12 13 14 15       10 11
22 23 24 25       20 21 22
33 34 35       30 31 32 33
44 45       40 41 42 43 44
55       50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
three columns of AP upper. The lower triangle A(4:6,0:2) consists of
conjugate-transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:2,0:2) consists of
conjugate-transpose of the last three columns of AP lower.
To denote conjugate we place -- above the element. This covers the
case N even and TRANSR = 'N'.
RFP A                   RFP A
-- -- --
03 04 05                33 43 53
-- --
13 14 15                00 44 54
--
23 24 25                10 11 55
33 34 35                20 21 22
--
00 44 45                30 31 32
-- --
01 11 55                40 41 42
-- -- --
02 12 22                50 51 52
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
transpose of RFP A above. One therefore gets:
RFP A                   RFP A
-- -- -- --                -- -- -- -- -- --
03 13 23 33 00 01 02    33 00 10 20 30 40 50
-- -- -- -- --                -- -- -- -- --
04 14 24 34 44 11 12    43 44 11 21 31 41 51
-- -- -- -- -- --                -- -- -- --
05 15 25 35 45 55 22    53 54 55 22 32 42 52
We next  consider Standard Packed Format when N is odd.
We give an example where N = 5.
AP is Upper                 AP is Lower
00 01 02 03 04              00
11 12 13 14              10 11
22 23 24              20 21 22
33 34              30 31 32 33
44              40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
three columns of AP upper. The lower triangle A(3:4,0:1) consists of
conjugate-transpose of the first two   columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:1,1:2) consists of
conjugate-transpose of the last two   columns of AP lower.
To denote conjugate we place -- above the element. This covers the
case N odd  and TRANSR = 'N'.
RFP A                   RFP A
-- --
02 03 04                00 33 43
--
12 13 14                10 11 44
22 23 24                20 21 22
--
00 33 34                30 31 32
-- --
01 11 44                40 41 42
Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
transpose of RFP A above. One therefore gets:
RFP A                   RFP A
-- -- --                   -- -- -- -- -- --
02 12 22 00 01             00 10 20 30 40 50
-- -- -- --                   -- -- -- -- --
03 13 23 33 11             33 11 21 31 41 51
-- -- -- -- --                   -- -- -- --
04 14 24 34 44             43 44 22 32 42 52

LAPACK routine (version 3.3.1)             April 2011                            CPFTRS(3lapack)
```