Provided by: liblapack-doc_3.3.1-1_all

**NAME**

LAPACK-3 - computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF

**SYNOPSIS**

SUBROUTINE CPPTRI( UPLO, N, AP, INFO ) CHARACTER UPLO INTEGER INFO, N COMPLEX AP( * )

**PURPOSE**

CPPTRI computes the inverse of a complex Hermitian positive definite matrix A using the Cholesky factorization A = U**H*U or A = L*L**H computed by CPPTRF.

**ARGUMENTS**

UPLO (input) CHARACTER*1 = 'U': Upper triangular factor is stored in AP; = 'L': Lower triangular factor is stored in AP. N (input) INTEGER The order of the matrix A. N >= 0. AP (input/output) COMPLEX array, dimension (N*(N+1)/2) On entry, the triangular factor U or L from the Cholesky factorization A = U**H*U or A = L*L**H, packed columnwise as a linear array. The j-th column of U or L is stored in the array AP as follows: if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. On exit, the upper or lower triangle of the (Hermitian) inverse of A, overwriting the input factor U or L. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the (i,i) element of the factor U or L is zero, and the inverse could not be computed. LAPACK routine (version 3.3.1) April 2011 CPPTRI(3lapack)