Provided by: liblapack-doc_3.3.1-1_all bug

NAME

       LAPACK-3  - subroutine compute the I-th eigenvalue of a symmetric rank-one modification of
       a 2-by-2 diagonal matrix   diag( D ) + RHO  The diagonal  elements  in  the  array  D  are
       assumed to satisfy   D(i) < D(j) for i < j

SYNOPSIS

       SUBROUTINE SLAED5( I, D, Z, DELTA, RHO, DLAM )

           INTEGER        I

           REAL           DLAM, RHO

           REAL           D( 2 ), DELTA( 2 ), Z( 2 )

PURPOSE

       This  subroutine  computes  the  I-th eigenvalue of a symmetric rank-one modification of a
       2-by-2 diagonal matrix
        We also assume RHO > 0 and that the Euclidean norm of the vector
        Z is one.

ARGUMENTS

        I      (input) INTEGER
               The index of the eigenvalue to be computed.  I = 1 or I = 2.

        D      (input) REAL array, dimension (2)
               The original eigenvalues.  We assume D(1) < D(2).

        Z      (input) REAL array, dimension (2)
               The components of the updating vector.

        DELTA  (output) REAL array, dimension (2)
               The vector DELTA contains the information necessary
               to construct the eigenvectors.

        RHO    (input) REAL
               The scalar in the symmetric updating formula.

        DLAM   (output) REAL
               The computed lambda_I, the I-th updated eigenvalue.

FURTHER DETAILS

        Based on contributions by
           Ren-Cang Li, Computer Science Division, University of California
           at Berkeley, USA

 LAPACK routine (version 3.2)               April 2011                            SLAED5(3lapack)