Provided by: liblapack-doc_3.3.1-1_all bug

NAME

       LAPACK-3  -  performs  a matrix-vector product of the form   B := alpha * A * X + beta * B
       where A is a tridiagonal matrix of order N, B and X are N by NRHS matrices, and alpha  and
       beta are real scalars, each of which may be 0., 1., or -1

SYNOPSIS

       SUBROUTINE SLAGTM( TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB )

           CHARACTER      TRANS

           INTEGER        LDB, LDX, N, NRHS

           REAL           ALPHA, BETA

           REAL           B( LDB, * ), D( * ), DL( * ), DU( * ), X( LDX, * )

PURPOSE

       SLAGTM performs a matrix-vector product of the form

ARGUMENTS

        TRANS   (input) CHARACTER*1
                Specifies the operation applied to A.
                = 'N':  No transpose, B := alpha * A * X + beta * B
                = 'T':  Transpose,    B := alpha * A'* X + beta * B
                = 'C':  Conjugate transpose = Transpose

        N       (input) INTEGER
                The order of the matrix A.  N >= 0.

        NRHS    (input) INTEGER
                The number of right hand sides, i.e., the number of columns
                of the matrices X and B.

        ALPHA   (input) REAL
                The scalar alpha.  ALPHA must be 0., 1., or -1.; otherwise,
                it is assumed to be 0.

        DL      (input) REAL array, dimension (N-1)
                The (n-1) sub-diagonal elements of T.

        D       (input) REAL array, dimension (N)
                The diagonal elements of T.

        DU      (input) REAL array, dimension (N-1)
                The (n-1) super-diagonal elements of T.

        X       (input) REAL array, dimension (LDX,NRHS)
                The N by NRHS matrix X.
                LDX     (input) INTEGER
                The leading dimension of the array X.  LDX >= max(N,1).

        BETA    (input) REAL
                The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
                it is assumed to be 1.

        B       (input/output) REAL array, dimension (LDB,NRHS)
                On entry, the N by NRHS matrix B.
                On exit, B is overwritten by the matrix expression
                B := alpha * A * X + beta * B.

        LDB     (input) INTEGER
                The leading dimension of the array B.  LDB >= max(N,1).

 LAPACK auxiliary routine (version 3.3.1)   April 2011                            SLAGTM(3lapack)