Provided by: liblapack-doc_3.3.1-1_all #### NAME

```       LAPACK-3  -  ZLA_HERCOND_C  compute  the  infinity  norm  condition  number  of   op(A)  *
inv(diag(C)) where C is a DOUBLE PRECISION vector

```

#### SYNOPSIS

```       DOUBLE PRECISION FUNCTION ZLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO,
WORK, RWORK )

IMPLICIT     NONE

CHARACTER    UPLO

LOGICAL      CAPPLY

INTEGER      N, LDA, LDAF, INFO

INTEGER      IPIV( * )

COMPLEX*16   A( LDA, * ), AF( LDAF, * ), WORK( * )

DOUBLE       PRECISION C ( * ), RWORK( * )

```

#### PURPOSE

```          ZLA_HERCOND_C computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

```

#### ARGUMENTS

```        UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.

N       (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.

A       (input) COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A

LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).

AF      (input) COMPLEX*16 array, dimension (LDAF,N)
The block diagonal matrix D and the multipliers used to
obtain the factor U or L as computed by ZHETRF.

LDAF    (input) INTEGER
The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV    (input) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHETRF.

C       (input) DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).

CAPPLY  (input) LOGICAL
If .TRUE. then access the vector C in the formula above.

INFO    (output) INTEGER
= 0:  Successful exit.
i > 0:  The ith argument is invalid.

WORK    (input) COMPLEX*16 array, dimension (2*N).
Workspace.

RWORK   (input) DOUBLE PRECISION array, dimension (N).
Workspace.

LAPACK routine (version 3.2.1)          April 2011                     ZLA_HERCOND_C(3lapack)
```