Provided by: liblapack-doc_3.3.1-1_all

**NAME**

LAPACK-3 - ZLA_HERCOND_C compute the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector

**SYNOPSIS**

DOUBLE PRECISION FUNCTION ZLA_HERCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK ) IMPLICIT NONE CHARACTER UPLO LOGICAL CAPPLY INTEGER N, LDA, LDAF, INFO INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * ) DOUBLE PRECISION C ( * ), RWORK( * )

**PURPOSE**

ZLA_HERCOND_C computes the infinity norm condition number of op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.

**ARGUMENTS**

UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. A (input) COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) COMPLEX*16 array, dimension (LDAF,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZHETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF. C (input) DOUBLE PRECISION array, dimension (N) The vector C in the formula op(A) * inv(diag(C)). CAPPLY (input) LOGICAL If .TRUE. then access the vector C in the formula above. INFO (output) INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. WORK (input) COMPLEX*16 array, dimension (2*N). Workspace. RWORK (input) DOUBLE PRECISION array, dimension (N). Workspace. LAPACK routine (version 3.2.1) April 2011 ZLA_HERCOND_C(3lapack)