Provided by: liblapack-doc_3.3.1-1_all NAME

LAPACK-3  -  ZLA_PORCOND_C  Compute  the  infinity  norm  condition  number  of   op(A)  *
inv(diag(C)) where C is a DOUBLE PRECISION  vector   Arguments  =========    UPLO  (input)
CHARACTER*1  = 'U'

SYNOPSIS

DOUBLE PRECISION FUNCTION ZLA_PORCOND_C( UPLO, N, A, LDA, AF, LDAF, C, CAPPLY, INFO, WORK,
RWORK )

IMPLICIT     NONE

CHARACTER    UPLO

LOGICAL      CAPPLY

INTEGER      N, LDA, LDAF, INFO

COMPLEX*16   A( LDA, * ), AF( LDAF, * ), WORK( * )

DOUBLE       PRECISION C( * ), RWORK( * )

PURPOSE

ZLA_PORCOND_C Computes the infinity norm condition number of
op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector
= 'L':  Lower triangle of A is stored.
N       (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.
A       (input) COMPLEX*16 array, dimension (LDA,N)
On entry, the N-by-N matrix A
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
AF      (input) COMPLEX*16 array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**H*U or A = L*L**H, as computed by ZPOTRF.
LDAF    (input) INTEGER
The leading dimension of the array AF.  LDAF >= max(1,N).
C       (input) DOUBLE PRECISION array, dimension (N)
The vector C in the formula op(A) * inv(diag(C)).
CAPPLY  (input) LOGICAL
If .TRUE. then access the vector C in the formula above.
INFO    (output) INTEGER
= 0:  Successful exit.
i > 0:  The ith argument is invalid.
WORK    (input) COMPLEX*16 array, dimension (2*N).
Workspace.
RWORK   (input) DOUBLE PRECISION array, dimension (N).
Workspace.

LAPACK routine (version 3.2.1)          April 2011                     ZLA_PORCOND_C(3lapack)