Provided by: liblapack-doc_3.3.1-1_all NAME

LAPACK-3  -  computes  the Cholesky factorization of a complex Hermitian positive definite
matrix A stored in packed format

SYNOPSIS

SUBROUTINE ZPPTRF( UPLO, N, AP, INFO )

CHARACTER      UPLO

INTEGER        INFO, N

COMPLEX*16     AP( * )

PURPOSE

ZPPTRF computes the Cholesky factorization of a complex Hermitian positive definite matrix
A stored in packed format.
The factorization has the form
A = U**H * U,  if UPLO = 'U', or
A = L  * L**H,  if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.

ARGUMENTS

UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.

N       (input) INTEGER
The order of the matrix A.  N >= 0.

AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**H*U or A = L*L**H, in the same
storage format as A.

INFO    (output) INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value
> 0:  if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.

FURTHERDETAILS

The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the Hermitian matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34     (aij = conjg(aji))
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

LAPACK routine (version 3.3.1)             April 2011                            ZPPTRF(3lapack)