Provided by: liblapack-doc_3.3.1-1_all bug

NAME

       LAPACK-3  -  overwrites  the  general complex M-by-N matrix C with   SIDE = 'L' SIDE = 'R'
       TRANS = 'N'

SYNOPSIS

       SUBROUTINE ZUNMHR( SIDE, TRANS, M, N, ILO, IHI, A, LDA, TAU, C, LDC, WORK, LWORK, INFO )

           CHARACTER      SIDE, TRANS

           INTEGER        IHI, ILO, INFO, LDA, LDC, LWORK, M, N

           COMPLEX*16     A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )

PURPOSE

       ZUNMHR overwrites the general complex M-by-N matrix C with
        TRANS = 'C':      Q**H * C       C * Q**H
        where Q is a complex unitary matrix of order nq, with nq = m if
        SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of
        IHI-ILO elementary reflectors, as returned by ZGEHRD:
        Q = H(ilo) H(ilo+1) . . . H(ihi-1).

ARGUMENTS

        SIDE    (input) CHARACTER*1
                = 'L': apply Q or Q**H from the Left;
                = 'R': apply Q or Q**H from the Right.

        TRANS   (input) CHARACTER*1
                = 'N': apply Q  (No transpose)
                = 'C': apply Q**H (Conjugate transpose)

        M       (input) INTEGER
                The number of rows of the matrix C. M >= 0.

        N       (input) INTEGER
                The number of columns of the matrix C. N >= 0.

        ILO     (input) INTEGER
                IHI     (input) INTEGER
                ILO and IHI must have the same values as in the previous call
                of ZGEHRD. Q is equal to the unit matrix except in the
                submatrix Q(ilo+1:ihi,ilo+1:ihi).
                If SIDE = 'L', then 1 <= ILO <= IHI <= M, if M > 0, and
                ILO = 1 and IHI = 0, if M = 0;
                if SIDE = 'R', then 1 <= ILO <= IHI <= N, if N > 0, and
                ILO = 1 and IHI = 0, if N = 0.

        A       (input) COMPLEX*16 array, dimension
                (LDA,M) if SIDE = 'L'
                (LDA,N) if SIDE = 'R'
                The vectors which define the elementary reflectors, as
                returned by ZGEHRD.

        LDA     (input) INTEGER
                The leading dimension of the array A.
                LDA >= max(1,M) if SIDE = 'L'; LDA >= max(1,N) if SIDE = 'R'.

        TAU     (input) COMPLEX*16 array, dimension
                (M-1) if SIDE = 'L'
                (N-1) if SIDE = 'R'
                TAU(i) must contain the scalar factor of the elementary
                reflector H(i), as returned by ZGEHRD.

        C       (input/output) COMPLEX*16 array, dimension (LDC,N)
                On entry, the M-by-N matrix C.
                On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

        LDC     (input) INTEGER
                The leading dimension of the array C. LDC >= max(1,M).

        WORK    (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK))
                On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

        LWORK   (input) INTEGER
                The dimension of the array WORK.
                If SIDE = 'L', LWORK >= max(1,N);
                if SIDE = 'R', LWORK >= max(1,M).
                For optimum performance LWORK >= N*NB if SIDE = 'L', and
                LWORK >= M*NB if SIDE = 'R', where NB is the optimal
                blocksize.
                If LWORK = -1, then a workspace query is assumed; the routine
                only calculates the optimal size of the WORK array, returns
                this value as the first entry of the WORK array, and no error
                message related to LWORK is issued by XERBLA.

        INFO    (output) INTEGER
                = 0:  successful exit
                < 0:  if INFO = -i, the i-th argument had an illegal value

 LAPACK routine (version 3.2)               April 2011                            ZUNMHR(3lapack)