Provided by: freebsd-manpages_8.2-1_all bug

NAME

     natmip — IP over ATM PVCs

SYNOPSIS

     device atm
     options NATM

DESCRIPTION

     The NATM protocol stack includes support for IP over ATM.  Without any additional signalling
     stacks or other modules it is possible to build a CLIP (classical IP over ATM) network based
     on PVCs.

     An ATM network card (en0 in this example) is configured for IP by something like:

           ifconfig en0 128.252.200.1 netmask 0xffffff00 up

     IP routing is done with special interface routes (routes with directly reachable
     destinations) with a link layer gateway address.  The link layer address specifies the ATM
     interface through which the destination can be reached, the virtual channel that connects to
     the destination and the ATM characteristics of this channel.  The address part of the link
     layer address (see link_addr(3)) consists of a fixed part (the first 5 bytes) and a part
     that depends on the kind of the PVC (UBR, CBR, VBR, ABR).  Multi-byte values are big-endian
     encoded: the bytes with the lower numbers contain the higher order bits.

           byte 0         Is a flag byte.  Currently only flag 0x20 is used.  When set, all IP
                          frames are LLC/SNAP encapsulated before putting them into an AAL5
                          frame.  Setting this flag is recommended and allows interoperability
                          with other CLIP implementations.  Note that BPF works only with
                          LLC/SNAP encapsulation.

           byte 1         This is the VPI of the channel.

           bytes 2...3    VCI of the channel.  Must not be zero.

           byte 4         Traffic type.  One of 0 (UBR), 1 (CBR), 2 (ABR), 3 (VBR).

     The variable part for UBR connections may be either empty or three bytes:

           bytes 5...7    Specifies the peak cell rate for UBR.

     The variable part for CBR connections must be three bytes:

           bytes 5...7    Specifies the peak cell rate for CBR.

     The variable part for VBR connections must be 9 bytes long and specifies three values:

           bytes 5...7    Specifies the peak cell rate for VBR.

           bytes 8...10   This is the sustainable cell rate.

           bytes 11...13  The maximum burst size.

     The variable part for ABR connections must be 19 bytes long and specifies the following
     values:

           bytes 5...7    Specifies the peak cell rate for ABR.

           bytes 8...10   The minimum cell rate.

           bytes 11...13  The initial cell rate.

           bytes 14...16  The transient buffer exposure.

           byte 17        The NRM value.

           byte 18        The TRM value.

           bytes 19...20  The ADTF value.

           byte 21        The rate increase factor (RIF).

           byte 22        The rate decrease factor (RDF).

           byte 23        The cutoff decrease factor (CDF).

     To add a PVC the route(8) utility can be used:

           route add -ifaceremote IP address-linkiface⟩:⟨lladdr⟩

     The iface is the ATM interface through which remote IP address can be reached and lladdr is
     the link layer address as a string of dot-separated, hexadecimal bytes.

     NATM also supports the old, original format.  This consists of 4 byte link layer addresses
     (and the channels are implicit UBR):

           byte 0         Flags:
                                0x01  use AAL5.
                                0x02  if using AAL5, use an LLC/SNAP header.

                          Thus, parameter 3 means AAL5 and LLC/SNAP encapsulation (this is the
                          required setting for interworking with other CLIP clients).  Note that
                          BPF works only with LLC/SNAP encapsulation.

           byte 1         VPI for the channel

           bytes 2...3    VCI for the channel

EXAMPLES

     Suppose you have 3 hosts 128.252.200.1, 128.252.200.2 and 128.252.200.3 connected by ATM
     through PVCs:

           between 128.252.200.1 and 128.252.200.2: 0xc9 UBR
           between 128.252.200.1 and 128.252.200.3: 0xca VBR
           between 128.252.200.2 and 128.252.200.3: 0xcb CBR

     The parameters for the VBR channel are: PCR 50000, SCR 10000, MBS 10.  The peak cell rate
     for the CBR channel is 100000.

     To enable the links use the following commands:

     on host 128.252.200.1:
           ifconfig en0 128.252.200.1 netmask 0xffffff00 up
           route add -iface 128.252.200.2 -link en0:3.0.0.c9.0
           route add -iface 128.252.200.3 -link en0:3.0.0.ca.3.0.c3.50.0.27.10.0.0.a

     on host 128.252.200.2:
           ifconfig en0 128.252.200.2 netmask 0xffffff00 up
           route add -iface 128.252.200.1 -link en0:3.0.0.c9.0
           route add -iface 128.252.200.3 -link en0:3.0.0.cb.1.1.86.a0

     on host 128.252.200.3:
           ifconfig en0 128.252.200.3 netmask 0xffffff00 up
           route add -iface 128.252.200.1 -link en0:3.0.0.ca.3.0.c3.50.0.27.10.0.0.a
           route add -iface 128.252.200.2 -link en0:3.0.0.cb.1.1.86.a0

     This can also be done in rc.conf(5):

     on host 128.252.200.1:
           network_interfaces="lo0 en0"
           ifconfig_en0="inet 128.252.200.1 netmask 255.255.255.0"
           static_routes="host2 host3"
           route_host2="-iface 128.252.200.2 -link en0:3.0.0.c9.0"
           route_host3="-iface 128.252.200.3 -link en0:3.0.0.ca.3.0.c3.50.0.27.10.0.0.a"

     on host 128.252.200.2:
           network_interfaces="lo0 en0"
           ifconfig_en0="inet 128.252.200.2 netmask 255.255.255.0"
           static_routes="host1 host3"
           route_host1="-iface 128.252.200.1 -link en0:3.0.0.c9.0"
           route_host3="-iface 128.252.200.3 -link en0:3.0.0.cb.1.1.86.a0"

     on host 128.252.200.3:
           network_interfaces="lo0 en0"
           ifconfig_en0="inet 128.252.200.3 netmask 255.255.255.0"
           static_routes="host1 host2"
           route_host1="-iface 128.252.200.1 -link en0:3.0.0.ca.3.0.c3.50.0.27.10.0.0.a"
           route_host2="-iface 128.252.200.2 -link en0:3.0.0.cb.1.1.86.a0"

SEE ALSO

     en(4), fatm(4), hatm(4), natm(4), patm(4)

AUTHORS

     Chuck Cranor of Washington University implemented the NATM protocol layer along with the EN
     ATM driver in 1996 for NetBSD.