Provided by: librheolef-dev_5.93-2_i386 bug


       newton -- Newton nonlinear algorithm


       Nonlinear Newton algorithm for the resolution of the following problem:

              F(u) = 0

       A simple call to the algorithm writes:

           my_problem P;
           field uh (Vh);
           newton (P, uh, tol, max_iter);

       The  my_problem class may contains methods for the evaluation of F (aka
       residue) and its derivative:

           class my_problem {
             field residue (const field& uh) const;
             void update_derivative (const field& uh) const;
             field derivative_solve (const field& mrh) const;
             Float norm (const field& uh) const;
             Float dual_norm (const field& Muh) const;

       See the example p-laplacian.h in the user's documentation for more.


       template <class Problem, class Field>
       int newton (Problem P, Field& uh, Float& tol, size_t& max_iter, std::ostream *p_cerr = 0) {
           if (p_cerr) *p_cerr << "# Newton: n r" << std::endl;
           for (size_t n = 0; true; n++) {
             Field rh = P.residue(uh);
             Float r = P.dual_norm(rh);
             if (p_cerr) *p_cerr << n << " " << r << std::endl;
             if (r <= tol) { tol = r; max_iter = n; return 0; }
             if (n == max_iter) { tol = r; return 1; }
             P.update_derivative (uh);
             Field delta_uh = P.derivative_solve (-rh);
             uh += delta_uh;