Provided by: grass-doc_6.4.3-3_all

**NAME**

r3.mapcalc

**DESCRIPTION**

r3.mapcalcperforms arithmetic on 3D grid volume data. New 3D grids can be created which are arithmetic expressions involving existing 3D grids, integer or floating point constants, and functions.

**PROGRAM** **USE**

If used without command line arguments,r3.mapcalcwill read its input, one line at a time, from standard input (which is the keyboard, unless redirected from a file or across a pipe). Otherwise, the expression on the command line is evaluated.r3.mapcalcexpects its input to have the form:result=expressionwhereresultis the name of a 3D grid to contain the result of the calculation andexpressionis any legal arithmetic expression involving existing 3D grid, floating point constants, and functions known to the calculator. Parentheses are allowed in the expression and may be nested to any depth.resultwill be created in the user's current mapset. The formula entered tor3.mapcalcby the user is recorded both in theresultgrid title (which appears in the category file forresult) and in the history file forresult. Some characters have special meaning to the command shell. If the user is entering input tor.mapcalcon the command line, expressions should be enclosed within single quotes. See NOTES, below.

**OPERATORS** **AND** **ORDER** **OF** **PRECEDENCE**

The following operators are supported: Operator Meaning Type Precedence -------------------------------------------------------------- - negation Arithmetic 12 ~ one's complement Bitwise 12 ! not Logical 12 ^ exponentiation Arithmetic 11 % modulus Arithmetic 10 / division Arithmetic 10 * multiplication Arithmetic 10 + addition Arithmetic 9 - subtraction Arithmetic 9 << left shift Bitwise 8 >> right shift Bitwise 8 >>> right shift (unsigned) Bitwise 8 > greater than Logical 7 >= greater than or equal Logical 7 < less than Logical 7 <= less than or equal Logical 7 == equal Logical 6 != not equal Logical 6 & bitwise and Bitwise 5 | bitwise or Bitwise 4 && logical and Logical 3 &&& logical and[1] Logical 3 || logical or Logical 2 ||| logical or[1] Logical 2 ?: conditional Logical 1 (modulus is the remainder upon division) [1] The &&& and ||| operators handle null values differently to other operators. See the section entitledNULLsupportbelow for more details. The operators are applied from left to right, with those of higher precedence applied before those with lower precedence. Division by 0 and modulus by 0 are acceptable and give a NULL result. The logical operators give a 1 result if the comparison is true, 0 otherwise.

**3D** **GRID** **NAMES**

Anything in the expression which is not a number, operator, or function name is taken to be a 3D grid name. Examples: volume x3 3d.his Most GRASS raster map layers and 3D grids meet this naming convention. However, if a 3D grid has a name which conflicts with the above rule, it should be quoted. For example, the expression x = a-b would be interpreted as: x equals a minus b, whereas x = "a-b" would be interpreted as: x equals the 3D grid nameda-bAlso x = 3107 would createxfilled with the number 3107, while x = "3107" would copy the 3D grid3107to the 3D gridx. Quotes are not required unless the 3D grid names look like numbers or contain operators, OR unless the program is run non-interactively. Examples given here assume the program is run interactively. See NOTES, below.r3.mapcalcwill look for the 3D grids according to the user's current mapset search path. It is possible to override the search path and specify the mapset from which to select the 3D grid. This is done by specifying the 3D grid name in the form: name@mapset For example, the following is a legal expression: result = x@PERMANENT / y@SOILS The mapset specified does not have to be in the mapset search path. (This method of overriding the mapset search path is common to all GRASS commands, not justr3.mapcalc.)

**THE** **NEIGHBORHOOD** **MODIFIER**

3D grids are data base files stored in voxel format, i.e., three-dimensional matrices of float/double values. Inr3.mapcalc, 3D grids may be followed by aneighborhoodmodifier that specifies a relative offset from the current cell being evaluated. The format ismap[r,c,d], whereris the row offset,cis the column offset anddis the depth offset. For example,map[1,2,3]refers to the cell one row below, two columns to the right and 3 levels below of the current cell,map[-3,-2,-1]refers to the cell three rows above, two columns to the left and one level below of the current cell, andmap[0,1,0]refers to the cell one column to the right of the current cell. This syntax permits the development of neighborhood-type filters within a single 3D grid or across multiple 3D grids.

**FUNCTIONS**

The functions currently supported are listed in the table below. The type of the result is indicated in the last column.Fmeans that the functions always results in a floating point value,Imeans that the function gives an integer result, and*indicates that the result is float if any of the arguments to the function are floating point values and integer if all arguments are integer. function description type --------------------------------------------------------------------------- abs(x) return absolute value of x * acos(x) inverse cosine of x (result is in degrees) F asin(x) inverse sine of x (result is in degrees) F atan(x) inverse tangent of x (result is in degrees) F atan(x,y) inverse tangent of y/x (result is in degrees) F cos(x) cosine of x (x is in degrees) F double(x) convert x to double-precision floating point F eval([x,y,...,]z) evaluate values of listed expr, pass results to z exp(x) exponential function of x F exp(x,y) x to the power y F float(x) convert x to single-precision floating point F graph(x,x1,y1[x2,y2..]) convert the x to a y based on points in a graph F if decision options: * if(x) 1 if x not zero, 0 otherwise if(x,a) a if x not zero, 0 otherwise if(x,a,b) a if x not zero, b otherwise if(x,a,b,c) a if x > 0, b if x is zero, c if x < 0 int(x) convert x to integer [ truncates ] I isnull(x) check if x = NULL log(x) natural log of x F log(x,b) log of x base b F max(x,y[,z...]) largest value of those listed * median(x,y[,z...]) median value of those listed * min(x,y[,z...]) smallest value of those listed * mode(x,y[,z...]) mode value of those listed * not(x) 1 if x is zero, 0 otherwise pow(x,y) x to the power y * rand(a,b) random value x : a <= x < b round(x) round x to nearest integer I sin(x) sine of x (x is in degrees) F sqrt(x) square root of x F tan(x) tangent of x (x is in degrees) F xor(x,y) exclusive-or (XOR) of x and y I Internal variables: row() current row of moving window col() current col of moving window depth() return current depth x() current x-coordinate of moving window y() current y-coordinate of moving window z() return current z value ewres() current east-west resolution nsres() current north-south resolution tbres() current top-bottom resolution null() NULL value Note, that the row(), col() and depth() indexing starts with 1.

**FLOATING** **POINT** **VALUES** **IN** **THE** **EXPRESSION**

Floating point numbers are allowed in the expression. A floating point number is a number which contains a decimal point: 2.3 12.0 12. .81 Floating point values in the expression are handled in a special way. With arithmetic and logical operators, if either operand is float, the other is converted to float and the result of the operation is float. This means, in particular that division of integers results in a (truncated) integer, while division of floats results in an accurate floating point value. With functions of type * (see table above), the result is float if any argument is float, integer otherwise. Note: If you calculate with integer numbers, the resulting map will be integer. If you want to get a float result, add the decimal point to integer number(s). If you want floating point division, at least one of the arguments has to be a floating point value. Multiplying one of them by 1.0 will produce a floating-point result, as will using float(): r.mapcalc "ndvi=float(lsat.4 - lsat.3) / (lsat.4 + lsat.3)"

**NULL** **support**

Division by zero should result in NULL. Modulus by zero should result in NULL. NULL-values in any arithmetic or logical operation should result in NULL. (however, &&& and ||| are treated specially, as described below). The &&& and ||| operators observe the following axioms even when x is NULL: x &&& false == false false &&& x == false x ||| true == true true ||| x == true NULL-values in function arguments should result in NULL (however, if(), eval() and isnull() are treated specially, as described below). The eval() function always returns its last argument The situation for if() is: if(x) NULL if x is NULL; 0 if x is zero; 1 otherwise if(x,a) NULL if x is NULL; a if x is non-zero; 0 otherwise if(x,a,b) NULL if x is NULL; a if x is non-zero; b otherwise if(x,n,z,p) NULL if x is NULL; n if x is negative; z if x is zero; p if x is positive The (new) function isnull(x) returns: 1 if x is NULL; 0 otherwise. The (new) function null() (which has no arguments) returns an integer NULL. Non-NULL, but invalid, arguments to functions should result in NULL. Examples: log(-2) sqrt(-2) pow(a,b) where a is negative and b is not an integer NULL support: Please note that any math performed with NULL cells always results in a NULL value for these cells. If you want to replace a NULL cell on-the-fly, use the isnull() test function in a if-statement. Example: The users wants the NULL-valued cells to be treated like zeros. To add maps A and B (where B contains NULLs) to get a map C the user can use a construction like: C=A + if(isnull(B),0,B)NULLandconditions:For the one argument form: if(x) = NULL if x is NULL if(x) = 0 if x = 0 if(x) = 1 otherwise (i.e. x is neither NULL nor 0). For the two argument form: if(x,a) = NULL if x is NULL if(x,a) = 0 if x = 0 if(x,a) = a otherwise (i.e. x is neither NULL nor 0). For the three argument form: if(x,a,b) = NULL if x is NULL if(x,a,b) = b if x = 0 if(x,a,b) = a otherwise (i.e. x is neither NULL nor 0). For the four argument form: if(x,a,b,c) = NULL if x is NULL if(x,a,b,c) = a if x > 0 if(x,a,b,c) = b if x = 0 if(x,a,b,c) = c if x < 0 More generally, all operators and most functions return NULL if *any* of their arguments are NULL. The functions if(), isnull() and eval() are exceptions. The function isnull() returns 1 if its argument is NULL and 0 otherwise. If the user wants the opposite, the ! operator, e.g. "!isnull(x)" must be used. All forms of if() return NULL if the first argument is NULL. The 2, 3 and 4 argument forms of if() return NULL if the "selected" argument is NULL, e.g.: if(0,a,b) = b regardless of whether a is NULL if(1,a,b) = a regardless of whether b is NULL eval() always returns its last argument, so it only returns NULL if the last argument is NULL.Note: The user cannot test for NULL using the == operator, as that returns NULL if either or both arguments are NULL, i.e. if x and y are both NULL, then "x == y" and "x != y" are both NULL rather than 1 and 0 respectively. The behaviour makes sense if the user considers NULL as representing an unknown quantity. E.g. if x and y are both unknown, then the values of "x == y" and "x != y" are also unknown; if they both have unknown values, the user doesn't know whether or not they both have the same value.

**EXAMPLES**

To compute the average of two 3D gridsaandb: ave = (a + b)/2 To form a weighted average: ave = (5*a + 3*b)/8.0 To produce a binary representation of 3D gridaso that category 0 remains 0 and all other categories become 1: mask = a != 0 This could also be accomplished by: mask = if(a) To mask 3D gridbby 3D grida: result = if(a,b) To change all values below 5 to NULL: newmap = if(map<5, null(), 5) The graph function allows users to specify a x-y conversion using pairs of x,y coordinates. In some situations a transformation from one value to another is not easily established mathematically, but can be represented by a 2-D graph. The graph() function provides the opportunity to accomplish this. An x-axis value is provided to the graph function along with the associated graph represented by a series of x,y pairs. The x values must be monotonically increasing (each larger than or equal to the previous). The graph function linearly interpolates between pairs. Any x value lower the lowest x value (i.e. first) will have the associated y value returned. Any x value higher than the last will similarly have the associated y value returned. Consider the request: newmap = graph(map, 1,10, 2,25, 3,50) X (map) values supplied and y (newmap) values returned: 0, 10 1, 10, 1.5, 16.5 2.9, 47.5 4, 50 100, 50

**NOTES**

Extra care must be taken if the expression is given on the command line. Some characters have special meaning to the UNIX shell. These include, among others: * ( ) > & | It is advisable to put single quotes around the expression; e.g.: result = 'elevation * 2' Without the quotes, the *, which has special meaning to the UNIX shell, would be altered andr3.mapcalcwould see something other than the *. If the input comes directly from the keyboard and theresult3D grid exists, the user will be asked if it can be overwritten. Otherwise, theresult3D grid will automatically be overwritten if it exists. Quotingresultis not allowed. However, it is never necessary to quoteresultsince it is always taken to be a 3D grid name. For formulas that the user enters from standard input (rather than from the command line), a line continuation feature now exists. If the user adds \e to the end of an input line,r3.mapcalcassumes that the formula being entered by the user continues on to the next input line. There is no limit to the possible number of input lines or to the length of a formula. If ther3.mapcalcformula entered by the user is very long, the map title will contain only some of it, but most (if not all) of the formula will be placed into the history file for theresultmap. When the user enters input tor3.mapcalcnon-interactively on the command line, the program will not warn the user not to overwrite existing 3D grids. Users should therefore take care to assign program outputs 3D grid file names that do not yet exist in their current mapsets. The environment variable GRASS_RND_SEED is read to initialise the random number generator.

**BUGS**

Continuation lines must end with a \ and have NO trailing white space (blanks or tabs). If the user does leave white space at the end of continuation lines, the error messages produced byr.mapcalcwill be meaningless and the equation will not work as the user intended. This is important for the eval() function. Error messages produced byr.mapcalcare almost useless. In future,r.mapcalcshould make some attempt to point the user to the offending section of the equation, e.g.: x = a * b ++ c ERROR: somewhere in line 1: ... b ++ c ... Currently, there is no comment mechanism inr3.mapcalc. Perhaps adding a capability that would cause the entire line to be ignored when the user inserted a # at the start of a line as if it were not present, would do the trick. The function should require the user to type "end" or "exit" instead of simply a blank line. This would make separation of multiple scripts separable by white space. r.mapcalc does not print a warning in case of operations on NULL cells. It is left to the user to utilize the isnull() function.

**SEE** **ALSO**

r.mapcalc:AnAlgebraforGISandImageProcessing, by Michael Shapiro and Jim Westervelt, U.S. Army Construction Engineering Research Laboratory (March/1991).PerformingMapCalculationsonGRASSData:r.mapcalcProgramTutorial, by Marji Larson, Michael Shapiro and Scott Tweddale, U.S. Army Construction Engineering Research Laboratory (December 1991)r.mapcalc

**AUTHORS**

Tomas Paudits & Jaro Hofierka, funded by GeoModel s.r.o., Slovakia tpaudits@mailbox.sk, hofierka@geomodel.skLastchanged:$Date:2012-11-2401:24:40-0800(Sat,24Nov2012)$Full index © 1999-2012 GRASS Development Team