Provided by: libpcre3-dev_8.31-2ubuntu2.3_amd64 bug

NAME

       PCRE - Perl-compatible regular expressions

       #include <pcre.h>

PCRE NATIVE API BASIC FUNCTIONS


       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre_extra *pcre_study(const pcre *code, int options,
            const char **errptr);

       void pcre_free_study(pcre_extra *extra);

       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

PCRE NATIVE API STRING EXTRACTION FUNCTIONS


       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       void pcre_free_substring(const char *stringptr);

       void pcre_free_substring_list(const char **stringptr);

PCRE NATIVE API AUXILIARY FUNCTIONS


       pcre_jit_stack *pcre_jit_stack_alloc(int startsize, int maxsize);

       void pcre_jit_stack_free(pcre_jit_stack *stack);

       void pcre_assign_jit_stack(pcre_extra *extra,
            pcre_jit_callback callback, void *data);

       const unsigned char *pcre_maketables(void);

       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       int pcre_refcount(pcre *code, int adjust);

       int pcre_config(int what, void *where);

       const char *pcre_version(void);

       int pcre_pattern_to_host_byte_order(pcre *code,
            pcre_extra *extra, const unsigned char *tables);

PCRE NATIVE API INDIRECTED FUNCTIONS


       void *(*pcre_malloc)(size_t);

       void (*pcre_free)(void *);

       void *(*pcre_stack_malloc)(size_t);

       void (*pcre_stack_free)(void *);

       int (*pcre_callout)(pcre_callout_block *);

PCRE 8-BIT AND 16-BIT LIBRARIES


       From release 8.30, PCRE can be compiled as a library for handling 16-bit character strings
       as well as, or instead of, the original library that handles 8-bit character  strings.  To
       avoid  too much complication, this document describes the 8-bit versions of the functions,
       with only occasional references to the 16-bit library.

       The 16-bit functions operate in the same way as their 8-bit counterparts;  they  just  use
       different  data  types for their arguments and results, and their names start with pcre16_
       instead of pcre_. For every option that has UTF8 in its  name  (for  example,  PCRE_UTF8),
       there is a corresponding 16-bit name with UTF8 replaced by UTF16. This facility is in fact
       just cosmetic; the 16-bit option names define the same bit values.

       References to bytes and UTF-8 in this document should be read as references to 16-bit data
       quantities  and  UTF-16  when  using  the 16-bit library, unless specified otherwise. More
       details of the specific differences for the 16-bit library are given in the pcre16 page.

PCRE API OVERVIEW


       PCRE has its own native API, which is described in this  document.  There  are  also  some
       wrapper  functions  (for  the  8-bit  library  only)  that correspond to the POSIX regular
       expression API, but they do not give access to all the functionality. They  are  described
       in the pcreposix documentation. Both of these APIs define a set of C function calls. A C++
       wrapper (again for the 8-bit library only) is also distributed with PCRE. It is documented
       in the pcrecpp page.

       The  native  API C function prototypes are defined in the header file pcre.h, and on Unix-
       like systems the (8-bit) library itself is called libpcre. It can normally be accessed  by
       adding  -lpcre  to  the command for linking an application that uses PCRE. The header file
       defines the macros PCRE_MAJOR and PCRE_MINOR  to  contain  the  major  and  minor  release
       numbers  for  the  library.  Applications  can  use these to include support for different
       releases of PCRE.

       In a Windows environment, if you want to statically link an application program against  a
       non-dll  pcre.a  file,  you  must define PCRE_STATIC before including pcre.h or pcrecpp.h,
       because otherwise the pcre_malloc() and pcre_free() exported functions  will  be  declared
       __declspec(dllimport), with unwanted results.

       The  functions pcre_compile(), pcre_compile2(), pcre_study(), and pcre_exec() are used for
       compiling and matching regular expressions in a Perl-compatible manner. A  sample  program
       that demonstrates the simplest way of using them is provided in the file called pcredemo.c
       in the PCRE source distribution. A listing of  this  program  is  given  in  the  pcredemo
       documentation, and the pcresample documentation describes how to compile and run it.

       Just-in-time  compiler  support  is  an  optional  feature  of  PCRE  that can be built in
       appropriate hardware environments. It greatly speeds up the matching performance  of  many
       patterns.  Simple  programs can easily request that it be used if available, by setting an
       option that is ignored when it is not relevant. More complicated programs  might  need  to
       make   use   of   the   functions   pcre_jit_stack_alloc(),   pcre_jit_stack_free(),   and
       pcre_assign_jit_stack() in order to control the JIT code's memory usage.  These  functions
       are discussed in the pcrejit documentation.

       A  second  matching  function,  pcre_dfa_exec(),  which  is  not  Perl-compatible, is also
       provided. This uses a different algorithm for  the  matching.  The  alternative  algorithm
       finds  all  possible matches (at a given point in the subject), and scans the subject just
       once (unless there are lookbehind assertions). However, this  algorithm  does  not  return
       captured substrings. A description of the two matching algorithms and their advantages and
       disadvantages is given in the pcrematching documentation.

       In addition to the main compiling and matching functions, there are convenience  functions
       for  extracting  captured substrings from a subject string that is matched by pcre_exec().
       They are:

         pcre_copy_substring()
         pcre_copy_named_substring()
         pcre_get_substring()
         pcre_get_named_substring()
         pcre_get_substring_list()
         pcre_get_stringnumber()
         pcre_get_stringtable_entries()

       pcre_free_substring() and pcre_free_substring_list() are also provided, to free the memory
       used for extracted strings.

       The  function  pcre_maketables() is used to build a set of character tables in the current
       locale for passing to pcre_compile(), pcre_exec(), or pcre_dfa_exec(). This is an optional
       facility that is provided for specialist use. Most commonly, no special tables are passed,
       in which case internal tables that are generated when PCRE is built are used.

       The function pcre_fullinfo() is used to find out information about a compiled pattern. The
       function  pcre_version()  returns a pointer to a string containing the version of PCRE and
       its date of release.

       The function pcre_refcount() maintains a reference count in  a  data  block  containing  a
       compiled pattern. This is provided for the benefit of object-oriented applications.

       The  global  variables pcre_malloc and pcre_free initially contain the entry points of the
       standard malloc() and free() functions, respectively. PCRE  calls  the  memory  management
       functions  via  these  variables,  so  a  calling program can replace them if it wishes to
       intercept the calls. This should be done before calling any PCRE functions.

       The global variables pcre_stack_malloc and pcre_stack_free are also indirections to memory
       management  functions.  These special functions are used only when PCRE is compiled to use
       the heap for remembering data, instead of  recursive  function  calls,  when  running  the
       pcre_exec() function. See the pcrebuild documentation for details of how to do this. It is
       a non-standard way of building PCRE, for use in environments  that  have  limited  stacks.
       Because  of  the greater use of memory management, it runs more slowly. Separate functions
       are provided so that special-purpose external code can be used for this case.  When  used,
       these functions are always called in a stack-like manner (last obtained, first freed), and
       always for memory blocks of the same size. There is a discussion about PCRE's stack  usage
       in the pcrestack documentation.

       The global variable pcre_callout initially contains NULL. It can be set by the caller to a
       "callout" function, which PCRE will then  call  at  specified  points  during  a  matching
       operation. Details are given in the pcrecallout documentation.

NEWLINES


       PCRE  supports  five different conventions for indicating line breaks in strings: a single
       CR (carriage return) character,  a  single  LF  (linefeed)  character,  the  two-character
       sequence  CRLF,  any  of the three preceding, or any Unicode newline sequence. The Unicode
       newline sequences are the three just mentioned, plus the single  characters  VT  (vertical
       tab,  U+000B),  FF  (form  feed,  U+000C),  NEL  (next  line, U+0085), LS (line separator,
       U+2028), and PS (paragraph separator, U+2029).

       Each of the first three conventions is used by  at  least  one  operating  system  as  its
       standard  newline  sequence.  When PCRE is built, a default can be specified.  The default
       default is LF, which is  the  Unix  standard.  When  PCRE  is  run,  the  default  can  be
       overridden, either when a pattern is compiled, or when it is matched.

       At  compile  time,  the  newline  convention  can  be specified by the options argument of
       pcre_compile(), or it can be specified by special text at the start of the pattern itself;
       this  overrides  any  other  settings. See the pcrepattern page for details of the special
       character sequences.

       In the PCRE documentation the word "newline" is used to mean "the  character  or  pair  of
       characters  that  indicate  a  line  break".  The choice of newline convention affects the
       handling of the dot, circumflex, and dollar metacharacters, the handling of #-comments  in
       /x  mode,  and,  when  CRLF  is  a  recognized  line  ending  sequence, the match position
       advancement for a non-anchored pattern. There is more detail about this in the section  on
       pcre_exec() options below.

       The choice of newline convention does not affect the interpretation of the \n or \r escape
       sequences, nor does it affect what \R matches, which is controlled in a similar  way,  but
       by separate options.

MULTITHREADING


       The  PCRE functions can be used in multi-threading applications, with the proviso that the
       memory management functions pointed to by pcre_malloc, pcre_free,  pcre_stack_malloc,  and
       pcre_stack_free,  and  the  callout function pointed to by pcre_callout, are shared by all
       threads.

       The compiled form of a regular expression is not altered  during  matching,  so  the  same
       compiled pattern can safely be used by several threads at once.

       If  the  just-in-time  optimization  feature is being used, it needs separate memory stack
       areas for each thread. See the pcrejit documentation for more details.

SAVING PRECOMPILED PATTERNS FOR LATER USE


       The compiled form of a regular expression can be  saved  and  re-used  at  a  later  time,
       possibly  by  a  different  program, and even on a host other than the one on which it was
       compiled. Details  are  given  in  the  pcreprecompile  documentation,  which  includes  a
       description  of  the  pcre_pattern_to_host_byte_order()  function.  However,  compiling  a
       regular expression with one version of PCRE for  use  with  a  different  version  is  not
       guaranteed to work and may cause crashes.

CHECKING BUILD-TIME OPTIONS


       int pcre_config(int what, void *where);

       The  function pcre_config() makes it possible for a PCRE client to discover which optional
       features have been compiled into the PCRE library. The pcrebuild  documentation  has  more
       details about these optional features.

       The  first  argument  for  pcre_config()  is  an  integer, specifying which information is
       required; the second argument is a pointer to a variable into  which  the  information  is
       placed.   The   returned   value   is   zero  on  success,  or  the  negative  error  code
       PCRE_ERROR_BADOPTION if the value in the first argument is not recognized.  The  following
       information is available:

         PCRE_CONFIG_UTF8

       The output is an integer that is set to one if UTF-8 support is available; otherwise it is
       set  to  zero.  If  this  option  is  given  to  the  16-bit  version  of  this  function,
       pcre16_config(), the result is PCRE_ERROR_BADOPTION.

         PCRE_CONFIG_UTF16

       The  output  is an integer that is set to one if UTF-16 support is available; otherwise it
       is set to zero. This value should  normally  be  given  to  the  16-bit  version  of  this
       function,  pcre16_config().  If  it  is  given  to the 8-bit version of this function, the
       result is PCRE_ERROR_BADOPTION.

         PCRE_CONFIG_UNICODE_PROPERTIES

       The output is an integer that is set to one if support for Unicode character properties is
       available; otherwise it is set to zero.

         PCRE_CONFIG_JIT

       The  output  is  an  integer  that  is set to one if support for just-in-time compiling is
       available; otherwise it is set to zero.

         PCRE_CONFIG_JITTARGET

       The output is a pointer to a zero-terminated "const char *"  string.  If  JIT  support  is
       available,  the string contains the name of the architecture for which the JIT compiler is
       configured, for example "x86 32bit (little endian + unaligned)". If  JIT  support  is  not
       available, the result is NULL.

         PCRE_CONFIG_NEWLINE

       The  output  is  an  integer  whose value specifies the default character sequence that is
       recognized as meaning "newline". The four values that are supported are: 10 for LF, 13 for
       CR,  3338  for  CRLF, -2 for ANYCRLF, and -1 for ANY.  Though they are derived from ASCII,
       the same  values  are  returned  in  EBCDIC  environments.  The  default  should  normally
       correspond to the standard sequence for your operating system.

         PCRE_CONFIG_BSR

       The  output  is  an  integer  whose value indicates what character sequences the \R escape
       sequence matches by default. A value of 0 means that \R matches any  Unicode  line  ending
       sequence;  a  value  of  1  means that \R matches only CR, LF, or CRLF. The default can be
       overridden when a pattern is compiled or matched.

         PCRE_CONFIG_LINK_SIZE

       The output is an integer that contains the number of bytes used for  internal  linkage  in
       compiled  regular expressions. For the 8-bit library, the value can be 2, 3, or 4. For the
       16-bit library, the value is either 2 or 4 and is still a number  of  bytes.  The  default
       value  of  2  is  sufficient  for  all  but the most massive patterns, since it allows the
       compiled pattern to be up to 64K in size.  Larger values allow larger regular  expressions
       to be compiled, at the expense of slower matching.

         PCRE_CONFIG_POSIX_MALLOC_THRESHOLD

       The  output is an integer that contains the threshold above which the POSIX interface uses
       malloc() for output vectors. Further details are given in the pcreposix documentation.

         PCRE_CONFIG_MATCH_LIMIT

       The output is a long integer that gives the default  limit  for  the  number  of  internal
       matching  function  calls  in  a  pcre_exec()  execution.  Further  details are given with
       pcre_exec() below.

         PCRE_CONFIG_MATCH_LIMIT_RECURSION

       The output is a long integer that gives the default limit for the depth of recursion  when
       calling  the  internal  matching  function in a pcre_exec() execution. Further details are
       given with pcre_exec() below.

         PCRE_CONFIG_STACKRECURSE

       The output is an integer that is set to one if internal recursion when running pcre_exec()
       is  implemented  by  recursive  function calls that use the stack to remember their state.
       This is the usual way that PCRE is compiled. The output is zero if PCRE  was  compiled  to
       use  blocks  of  data  on  the  heap  instead  of  recursive function calls. In this case,
       pcre_stack_malloc and pcre_stack_free are called to manage memory blocks on the heap, thus
       avoiding the use of the stack.

COMPILING A PATTERN


       pcre *pcre_compile(const char *pattern, int options,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       pcre *pcre_compile2(const char *pattern, int options,
            int *errorcodeptr,
            const char **errptr, int *erroffset,
            const unsigned char *tableptr);

       Either  of  the  functions  pcre_compile()  or  pcre_compile2() can be called to compile a
       pattern into an internal form. The only difference between  the  two  interfaces  is  that
       pcre_compile2() has an additional argument, errorcodeptr, via which a numerical error code
       can be returned. To avoid too much repetition, we refer just to pcre_compile() below,  but
       the information applies equally to pcre_compile2().

       The  pattern  is  a  C  string  terminated  by a binary zero, and is passed in the pattern
       argument. A pointer to a single block of  memory  that  is  obtained  via  pcre_malloc  is
       returned.  This  contains the compiled code and related data. The pcre type is defined for
       the returned block; this is a typedef for a structure whose contents  are  not  externally
       defined.  It  is  up to the caller to free the memory (via pcre_free) when it is no longer
       required.

       Although the compiled code of a PCRE regex is relocatable, that is, it does not depend  on
       memory  location,  the  complete  pcre data block is not fully relocatable, because it may
       contain a copy of the tableptr argument, which is an address (see below).

       The options argument contains various bit settings that affect the compilation. It  should
       be  zero  if  no  options are required. The available options are described below. Some of
       them (in particular, those that are compatible with Perl, but some  others  as  well)  can
       also  be  set  and  unset  from  within  the  pattern (see the detailed description in the
       pcrepattern documentation). For those options that can be different in different parts  of
       the pattern, the contents of the options argument specifies their settings at the start of
       compilation   and   execution.   The   PCRE_ANCHORED,   PCRE_BSR_xxx,    PCRE_NEWLINE_xxx,
       PCRE_NO_UTF8_CHECK,  and PCRE_NO_START_OPTIMIZE options can be set at the time of matching
       as well as at compile time.

       If errptr is NULL, pcre_compile() returns NULL immediately.  Otherwise, if compilation  of
       a  pattern  fails, pcre_compile() returns NULL, and sets the variable pointed to by errptr
       to point to a textual error message. This is a static string that is part of the  library.
       You  must  not  try  to free it. Normally, the offset from the start of the pattern to the
       byte that was being processed when the error was discovered  is  placed  in  the  variable
       pointed  to  by erroffset, which must not be NULL (if it is, an immediate error is given).
       However, for an invalid UTF-8 string, the offset is that of the first byte of the  failing
       character.

       Some errors are not detected until the whole pattern has been scanned; in these cases, the
       offset passed back is the length of the pattern. Note that the offset  is  in  bytes,  not
       characters,  even  in  UTF-8  mode.  It  may  sometimes  point  into the middle of a UTF-8
       character.

       If pcre_compile2() is used instead of pcre_compile(), and the errorcodeptr argument is not
       NULL, a non-zero error code number is returned via this argument in the event of an error.
       This is in addition to the textual error message. Error  codes  and  messages  are  listed
       below.

       If the final argument, tableptr, is NULL, PCRE uses a default set of character tables that
       are built when PCRE is compiled, using the default C locale. Otherwise, tableptr  must  be
       an  address  that  is the result of a call to pcre_maketables(). This value is stored with
       the compiled pattern, and used again by  pcre_exec(),  unless  another  table  pointer  is
       passed to it. For more discussion, see the section on locale support below.

       This code fragment shows a typical straightforward call to pcre_compile():

         pcre *re;
         const char *error;
         int erroffset;
         re = pcre_compile(
           "^A.*Z",          /* the pattern */
           0,                /* default options */
           &error,           /* for error message */
           &erroffset,       /* for error offset */
           NULL);            /* use default character tables */

       The following names for option bits are defined in the pcre.h header file:

         PCRE_ANCHORED

       If  this bit is set, the pattern is forced to be "anchored", that is, it is constrained to
       match only at the first matching point in the string that is being searched (the  "subject
       string").  This  effect  can  also  be  achieved  by appropriate constructs in the pattern
       itself, which is the only way to do it in Perl.

         PCRE_AUTO_CALLOUT

       If this bit is set, pcre_compile() automatically inserts callout items,  all  with  number
       255, before each pattern item. For discussion of the callout facility, see the pcrecallout
       documentation.

         PCRE_BSR_ANYCRLF
         PCRE_BSR_UNICODE

       These options (which are mutually exclusive) control what the \R escape sequence  matches.
       The  choice  is  either  to  match  only  CR, LF, or CRLF, or to match any Unicode newline
       sequence. The default is specified when PCRE is built. It can be  overridden  from  within
       the pattern, or by setting an option when a compiled pattern is matched.

         PCRE_CASELESS

       If  this bit is set, letters in the pattern match both upper and lower case letters. It is
       equivalent to Perl's /i option, and it can be changed within a pattern by  a  (?i)  option
       setting.  In  UTF-8 mode, PCRE always understands the concept of case for characters whose
       values are less than 128, so caseless matching is always  possible.  For  characters  with
       higher  values, the concept of case is supported if PCRE is compiled with Unicode property
       support, but not otherwise. If you want to use caseless matching for  characters  128  and
       above, you must ensure that PCRE is compiled with Unicode property support as well as with
       UTF-8 support.

         PCRE_DOLLAR_ENDONLY

       If this bit is set, a dollar metacharacter in the pattern matches only at the end  of  the
       subject string. Without this option, a dollar also matches immediately before a newline at
       the end of the string (but not before any other newlines). The PCRE_DOLLAR_ENDONLY  option
       is  ignored  if PCRE_MULTILINE is set.  There is no equivalent to this option in Perl, and
       no way to set it within a pattern.

         PCRE_DOTALL

       If this bit is set, a dot metacharacter in the pattern matches a character of  any  value,
       including  one that indicates a newline. However, it only ever matches one character, even
       if newlines are coded as CRLF. Without this option, a dot does not match when the  current
       position  is  at  a  newline. This option is equivalent to Perl's /s option, and it can be
       changed within a pattern by a (?s) option setting. A negative class such  as  [^a]  always
       matches newline characters, independent of the setting of this option.

         PCRE_DUPNAMES

       If  this bit is set, names used to identify capturing subpatterns need not be unique. This
       can be helpful for certain types of pattern when it is known that only one instance of the
       named  subpattern  can ever be matched. There are more details of named subpatterns below;
       see also the pcrepattern documentation.

         PCRE_EXTENDED

       If this bit is set, white space data characters in the pattern are totally ignored  except
       when  escaped  or  inside a character class. White space does not include the VT character
       (code 11). In addition, characters between an unescaped # outside a  character  class  and
       the next newline, inclusive, are also ignored. This is equivalent to Perl's /x option, and
       it can be changed within a pattern by a (?x) option setting.

       Which characters are interpreted as newlines  is  controlled  by  the  options  passed  to
       pcre_compile()  or  by a special sequence at the start of the pattern, as described in the
       section entitled "Newline conventions" in the pcrepattern documentation. Note that the end
       of  this  type  of  comment is a literal newline sequence in the pattern; escape sequences
       that happen to represent a newline do not count.

       This option makes it possible to include  comments  inside  complicated  patterns.   Note,
       however,  that  this  applies  only  to  data characters. White space characters may never
       appear within special character sequences in a pattern, for example  within  the  sequence
       (?( that introduces a conditional subpattern.

         PCRE_EXTRA

       This  option  was  invented  in  order to turn on additional functionality of PCRE that is
       incompatible with Perl, but it is currently of very little use. When set, any backslash in
       a  pattern  that is followed by a letter that has no special meaning causes an error, thus
       reserving these combinations for future expansion. By default, as  in  Perl,  a  backslash
       followed  by a letter with no special meaning is treated as a literal. (Perl can, however,
       be persuaded to give an error for this, by running it with the -w option.)  There  are  at
       present  no  other features controlled by this option. It can also be set by a (?X) option
       setting within a pattern.

         PCRE_FIRSTLINE

       If this option is set, an unanchored pattern is required to match before or at  the  first
       newline in the subject string, though the matched text may continue over the newline.

         PCRE_JAVASCRIPT_COMPAT

       If  this  option is set, PCRE's behaviour is changed in some ways so that it is compatible
       with JavaScript rather than Perl. The changes are as follows:

       (1) A lone closing square bracket in a pattern causes a compile-time error,  because  this
       is illegal in JavaScript (by default it is treated as a data character). Thus, the pattern
       AB]CD becomes illegal when this option is set.

       (2) At run time, a back reference to an unset subpattern group matches an empty string (by
       default  this  causes the current matching alternative to fail). A pattern such as (\1)(a)
       succeeds when this option is set (assuming it can find an "a" in the subject), whereas  it
       fails by default, for Perl compatibility.

       (3)  \U  matches  an  upper  case "U" character; by default \U causes a compile time error
       (Perl uses \U to upper case subsequent characters).

       (4) \u matches a lower case "u" character  unless  it  is  followed  by  four  hexadecimal
       digits,  in which case the hexadecimal number defines the code point to match. By default,
       \u causes a compile time error (Perl uses it to upper case the following character).

       (5) \x matches a lower case "x" character unless it is followed by two hexadecimal digits,
       in  which  case  the hexadecimal number defines the code point to match. By default, as in
       Perl, a hexadecimal number is always expected after \x, but it may have zero, one, or  two
       digits (so, for example, \xz matches a binary zero character followed by z).

         PCRE_MULTILINE

       By  default,  PCRE  treats the subject string as consisting of a single line of characters
       (even if it actually contains newlines). The "start of  line"  metacharacter  (^)  matches
       only at the start of the string, while the "end of line" metacharacter ($) matches only at
       the end of the string, or before a  terminating  newline  (unless  PCRE_DOLLAR_ENDONLY  is
       set). This is the same as Perl.

       When  PCRE_MULTILINE  it  is  set,  the "start of line" and "end of line" constructs match
       immediately following or immediately before  internal  newlines  in  the  subject  string,
       respectively,  as  well  as  at  the  very  start and end. This is equivalent to Perl's /m
       option, and it can be changed within a pattern by a (?m) option setting. If there  are  no
       newlines  in  a  subject  string,  or  no  occurrences  of  ^  or  $ in a pattern, setting
       PCRE_MULTILINE has no effect.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These options override the default newline definition that was chosen when PCRE was built.
       Setting  the  first  or  the  second  specifies  that  a  newline is indicated by a single
       character (CR or LF, respectively). Setting PCRE_NEWLINE_CRLF specifies that a newline  is
       indicated  by the two-character CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies that
       any of the three  preceding  sequences  should  be  recognized.  Setting  PCRE_NEWLINE_ANY
       specifies  that  any  Unicode  newline  sequence should be recognized. The Unicode newline
       sequences are the three just mentioned, plus  the  single  characters  VT  (vertical  tab,
       U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line separator, U+2028), and
       PS (paragraph separator, U+2029). For the 8-bit library, the last two are recognized  only
       in UTF-8 mode.

       The  newline  setting  in  the  options word uses three bits that are treated as a number,
       giving eight possibilities. Currently only six are used  (default  plus  the  five  values
       above).  This  means  that if you set more than one newline option, the combination may or
       may not be sensible. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF  is  equivalent  to
       PCRE_NEWLINE_CRLF, but other combinations may yield unused numbers and cause an error.

       The  only  time  that  a line break in a pattern is specially recognized when compiling is
       when PCRE_EXTENDED is set. CR and LF are white space characters, and  so  are  ignored  in
       this  mode.  Also, an unescaped # outside a character class indicates a comment that lasts
       until after the next line break sequence. In other circumstances, line break sequences  in
       patterns are treated as literal data.

       The  newline  option  that  is  set  at  compile time becomes the default that is used for
       pcre_exec() and pcre_dfa_exec(), but it can be overridden.

         PCRE_NO_AUTO_CAPTURE

       If this option is set, it disables the  use  of  numbered  capturing  parentheses  in  the
       pattern.  Any opening parenthesis that is not followed by ? behaves as if it were followed
       by ?: but named parentheses can still be used for capturing (and they acquire  numbers  in
       the usual way). There is no equivalent of this option in Perl.

         NO_START_OPTIMIZE

       This  is  an  option  that  acts  at  matching  time;  that is, it is really an option for
       pcre_exec() or pcre_dfa_exec(). If it is set at compile time, it is  remembered  with  the
       compiled  pattern  and  assumed  at  matching  time.  For  details  see  the discussion of
       PCRE_NO_START_OPTIMIZE below.

         PCRE_UCP

       This option changes the way PCRE processes \B, \b, \D, \d, \S, \s, \W, \w, and some of the
       POSIX character classes. By default, only ASCII characters are recognized, but if PCRE_UCP
       is set, Unicode properties are used instead to classify characters. More details are given
       in  the  section  on generic character types in the pcrepattern page. If you set PCRE_UCP,
       matching one of the items it affects takes much longer. The option is  available  only  if
       PCRE has been compiled with Unicode property support.

         PCRE_UNGREEDY

       This  option  inverts  the  "greediness" of the quantifiers so that they are not greedy by
       default, but become greedy if followed by "?". It is not compatible with Perl. It can also
       be set by a (?U) option setting within the pattern.

         PCRE_UTF8

       This  option  causes  PCRE  to regard both the pattern and the subject as strings of UTF-8
       characters instead of single-byte strings. However, it is  available  only  when  PCRE  is
       built to include UTF support. If not, the use of this option provokes an error. Details of
       how this option changes the behaviour of PCRE are given in the pcreunicode page.

         PCRE_NO_UTF8_CHECK

       When PCRE_UTF8 is set, the validity of the pattern as  a  UTF-8  string  is  automatically
       checked.  There  is  a  discussion  about the validity of UTF-8 strings in the pcreunicode
       page. If an invalid UTF-8 sequence is found,  pcre_compile()  returns  an  error.  If  you
       already  know  that your pattern is valid, and you want to skip this check for performance
       reasons, you can set the PCRE_NO_UTF8_CHECK option.  When it is set, the effect of passing
       an  invalid  UTF-8  string  as a pattern is undefined. It may cause your program to crash.
       Note that this option can also be passed to pcre_exec() and pcre_dfa_exec(),  to  suppress
       the validity checking of subject strings.

COMPILATION ERROR CODES


       The  following  table lists the error codes than may be returned by pcre_compile2(), along
       with the error messages that may be returned by both compiling functions. Note that  error
       messages  are always 8-bit ASCII strings, even in 16-bit mode. As PCRE has developed, some
       error codes have fallen out of use. To avoid confusion, they have not been re-used.

          0  no error
          1  \ at end of pattern
          2  \c at end of pattern
          3  unrecognized character follows \
          4  numbers out of order in {} quantifier
          5  number too big in {} quantifier
          6  missing terminating ] for character class
          7  invalid escape sequence in character class
          8  range out of order in character class
          9  nothing to repeat
         10  [this code is not in use]
         11  internal error: unexpected repeat
         12  unrecognized character after (? or (?-
         13  POSIX named classes are supported only within a class
         14  missing )
         15  reference to non-existent subpattern
         16  erroffset passed as NULL
         17  unknown option bit(s) set
         18  missing ) after comment
         19  [this code is not in use]
         20  regular expression is too large
         21  failed to get memory
         22  unmatched parentheses
         23  internal error: code overflow
         24  unrecognized character after (?<
         25  lookbehind assertion is not fixed length
         26  malformed number or name after (?(
         27  conditional group contains more than two branches
         28  assertion expected after (?(
         29  (?R or (?[+-]digits must be followed by )
         30  unknown POSIX class name
         31  POSIX collating elements are not supported
         32  this version of PCRE is compiled without UTF support
         33  [this code is not in use]
         34  character value in \x{...} sequence is too large
         35  invalid condition (?(0)
         36  \C not allowed in lookbehind assertion
         37  PCRE does not support \L, \l, \N{name}, \U, or \u
         38  number after (?C is > 255
         39  closing ) for (?C expected
         40  recursive call could loop indefinitely
         41  unrecognized character after (?P
         42  syntax error in subpattern name (missing terminator)
         43  two named subpatterns have the same name
         44  invalid UTF-8 string (specifically UTF-8)
         45  support for \P, \p, and \X has not been compiled
         46  malformed \P or \p sequence
         47  unknown property name after \P or \p
         48  subpattern name is too long (maximum 32 characters)
         49  too many named subpatterns (maximum 10000)
         50  [this code is not in use]
         51  octal value is greater than \377 in 8-bit non-UTF-8 mode
         52  internal error: overran compiling workspace
         53  internal error: previously-checked referenced subpattern
               not found
         54  DEFINE group contains more than one branch
         55  repeating a DEFINE group is not allowed
         56  inconsistent NEWLINE options
         57  \g is not followed by a braced, angle-bracketed, or quoted
               name/number or by a plain number
         58  a numbered reference must not be zero
         59  an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
         60  (*VERB) not recognized
         61  number is too big
         62  subpattern name expected
         63  digit expected after (?+
         64  ] is an invalid data character in JavaScript compatibility mode
         65  different names for subpatterns of the same number are
               not allowed
         66  (*MARK) must have an argument
         67  this version of PCRE is not compiled with Unicode property
               support
         68  \c must be followed by an ASCII character
         69  \k is not followed by a braced, angle-bracketed, or quoted name
         70  internal error: unknown opcode in find_fixedlength()
         71  \N is not supported in a class
         72  too many forward references
         73  disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
         74  invalid UTF-16 string (specifically UTF-16)
         75  name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
         76  character value in \u.... sequence is too large

       The numbers 32 and 10000 in errors 48 and 49 are defaults; different values may be used if
       the limits were changed when PCRE was built.

STUDYING A PATTERN


       pcre_extra *pcre_study(const pcre *code, int options
            const char **errptr);

       If  a  compiled  pattern is going to be used several times, it is worth spending more time
       analyzing it in order to speed up the time taken for matching. The  function  pcre_study()
       takes  a  pointer  to  a  compiled  pattern as its first argument. If studying the pattern
       produces additional information that will help speed up matching, pcre_study()  returns  a
       pointer  to a pcre_extra block, in which the study_data field points to the results of the
       study.

       The  returned  value  from  pcre_study()  can  be  passed  directly  to   pcre_exec()   or
       pcre_dfa_exec(). However, a pcre_extra block also contains other fields that can be set by
       the caller before the block is passed;  these  are  described  below  in  the  section  on
       matching a pattern.

       If  studying  the  pattern  does  not produce any useful information, pcre_study() returns
       NULL. In that circumstance, if the calling program wants to pass any of the  other  fields
       to pcre_exec() or pcre_dfa_exec(), it must set up its own pcre_extra block.

       The second argument of pcre_study() contains option bits. There are three options:

         PCRE_STUDY_JIT_COMPILE
         PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
         PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE

       If  any  of  these  are  set,  and  the just-in-time compiler is available, the pattern is
       further compiled into  machine  code  that  executes  much  faster  than  the  pcre_exec()
       interpretive  matching  function.  If  the  just-in-time  compiler is not available, these
       options are ignored. All other bits in the options argument must be zero.

       JIT compilation is a heavyweight optimization. It can take some time for  patterns  to  be
       analyzed,  and  for  one-off  matches  and simple patterns the benefit of faster execution
       might be offset by a much slower study time.  Not all patterns can be optimized by the JIT
       compiler.  For  those  that  cannot  be  handled, matching automatically falls back to the
       pcre_exec() interpreter. For more details, see the pcrejit documentation.

       The third argument for pcre_study() is  a  pointer  for  an  error  message.  If  studying
       succeeds  (even  if  no  data  is  returned),  the  variable  it points to is set to NULL.
       Otherwise it is set to point to a textual error message. This is a static string  that  is
       part  of  the  library. You must not try to free it. You should test the error pointer for
       NULL after calling pcre_study(), to be sure that it has run successfully.

       When you are finished with a pattern, you can free the memory used for the study  data  by
       calling  pcre_free_study().  This  function  was  added  to  the API for release 8.20. For
       earlier versions, the memory could be  freed  with  pcre_free(),  just  like  the  pattern
       itself.  This  will  still  work  in  cases  where JIT optimization is not used, but it is
       advisable to change to the new function when convenient.

       This is a typical way in which pcre_study() is used (except that  in  a  real  application
       there should be tests for errors):

         int rc;
         pcre *re;
         pcre_extra *sd;
         re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
         sd = pcre_study(
           re,             /* result of pcre_compile() */
           0,              /* no options */
           &error);        /* set to NULL or points to a message */
         rc = pcre_exec(   /* see below for details of pcre_exec() options */
           re, sd, "subject", 7, 0, 0, ovector, 30);
         ...
         pcre_free_study(sd);
         pcre_free(re);

       Studying  a pattern does two things: first, a lower bound for the length of subject string
       that is needed to match the pattern is computed. This does not mean  that  there  are  any
       strings  of  that  length that match, but it does guarantee that no shorter strings match.
       The value is used by pcre_exec() and pcre_dfa_exec() to avoid wasting time  by  trying  to
       match  strings  that  are  shorter  than  the lower bound. You can find out the value in a
       calling program via the pcre_fullinfo() function.

       Studying a pattern is also useful for non-anchored patterns that  do  not  have  a  single
       fixed  starting  character. A bitmap of possible starting bytes is created. This speeds up
       finding a position in the subject at which to start matching. (In 16-bit mode, the  bitmap
       is used for 16-bit values less than 256.)

       These two optimizations apply to both pcre_exec() and pcre_dfa_exec(), and the information
       is also used by the JIT compiler.  The  optimizations  can  be  disabled  by  setting  the
       PCRE_NO_START_OPTIMIZE  option when calling pcre_exec() or pcre_dfa_exec(), but if this is
       done, JIT execution is also disabled. You might want to do this if your  pattern  contains
       callouts  or  (*MARK) and you want to make use of these facilities in cases where matching
       fails. See the discussion of PCRE_NO_START_OPTIMIZE below.

LOCALE SUPPORT


       PCRE handles caseless matching, and determines whether characters are letters, digits,  or
       whatever,  by  reference  to  a set of tables, indexed by character value. When running in
       UTF-8 mode, this applies only to characters with codes less than 128. By default,  higher-
       valued  codes never match escapes such as \w or \d, but they can be tested with \p if PCRE
       is built with Unicode character property support. Alternatively, the PCRE_UCP  option  can
       be set at compile time; this causes \w and friends to use Unicode property support instead
       of built-in tables. The use of locales with Unicode is discouraged. If  you  are  handling
       characters  with  codes  greater than 128, you should either use UTF-8 and Unicode, or use
       locales, but not try to mix the two.

       PCRE contains an internal set  of  tables  that  are  used  when  the  final  argument  of
       pcre_compile()  is  NULL.  These  are  sufficient  for  many  applications.  Normally, the
       internal tables recognize only ASCII characters.  However,  when  PCRE  is  built,  it  is
       possible to cause the internal tables to be rebuilt in the default "C" locale of the local
       system, which may cause them to be different.

       The internal tables can always be overridden by tables supplied by  the  application  that
       calls  PCRE. These may be created in a different locale from the default. As more and more
       applications change to using Unicode, the need for this locale support is expected to  die
       away.

       External  tables  are  built  by  calling  the  pcre_maketables()  function,  which has no
       arguments, in the relevant locale. The result can then  be  passed  to  pcre_compile()  or
       pcre_exec()  as  often  as  necessary.  For  example,  to  build  and  use tables that are
       appropriate for the French locale (where accented characters with values greater than  128
       are treated as letters), the following code could be used:

         setlocale(LC_CTYPE, "fr_FR");
         tables = pcre_maketables();
         re = pcre_compile(..., tables);

       The  locale  name  "fr_FR"  is used on Linux and other Unix-like systems; if you are using
       Windows, the name for the French locale is "french".

       When pcre_maketables() runs,  the  tables  are  built  in  memory  that  is  obtained  via
       pcre_malloc.  It  is  the caller's responsibility to ensure that the memory containing the
       tables remains available for as long as it is needed.

       The pointer that is passed to pcre_compile() is saved with the compiled pattern,  and  the
       same  tables  are  used via this pointer by pcre_study() and normally also by pcre_exec().
       Thus, by default, for any single pattern, compilation, studying and matching all happen in
       the same locale, but different patterns can be compiled in different locales.

       It is possible to pass a table pointer or NULL (indicating the use of the internal tables)
       to pcre_exec(). Although not intended for this purpose, this facility  could  be  used  to
       match a pattern in a different locale from the one in which it was compiled. Passing table
       pointers at run time is discussed below in the section on matching a pattern.

INFORMATION ABOUT A PATTERN


       int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
            int what, void *where);

       The pcre_fullinfo() function returns information about a compiled pattern. It replaces the
       pcre_info()  function, which was removed from the library at version 8.30, after more than
       10 years of obsolescence.

       The first argument for pcre_fullinfo() is a pointer to the compiled  pattern.  The  second
       argument  is the result of pcre_study(), or NULL if the pattern was not studied. The third
       argument specifies which piece of information is required, and the fourth  argument  is  a
       pointer  to a variable to receive the data. The yield of the function is zero for success,
       or one of the following negative numbers:

         PCRE_ERROR_NULL           the argument code was NULL
                                   the argument where was NULL
         PCRE_ERROR_BADMAGIC       the "magic number" was not found
         PCRE_ERROR_BADENDIANNESS  the pattern was compiled with different
                                   endianness
         PCRE_ERROR_BADOPTION      the value of what was invalid

       The "magic number" is placed at the start of each compiled  pattern  as  an  simple  check
       against  passing an arbitrary memory pointer. The endianness error can occur if a compiled
       pattern  is  saved  and  reloaded  on  a  different  host.  Here  is  a  typical  call  of
       pcre_fullinfo(), to obtain the length of the compiled pattern:

         int rc;
         size_t length;
         rc = pcre_fullinfo(
           re,               /* result of pcre_compile() */
           sd,               /* result of pcre_study(), or NULL */
           PCRE_INFO_SIZE,   /* what is required */
           &length);         /* where to put the data */

       The possible values for the third argument are defined in pcre.h, and are as follows:

         PCRE_INFO_BACKREFMAX

       Return the number of the highest back reference in the pattern. The fourth argument should
       point to an int variable. Zero is returned if there are no back references.

         PCRE_INFO_CAPTURECOUNT

       Return the number of capturing subpatterns in the  pattern.  The  fourth  argument  should
       point to an int variable.

         PCRE_INFO_DEFAULT_TABLES

       Return a pointer to the internal default character tables within PCRE. The fourth argument
       should point to an unsigned char  *  variable.  This  information  call  is  provided  for
       internal  use  by  the  pcre_study()  function. External callers can cause PCRE to use its
       internal tables by passing a NULL table pointer.

         PCRE_INFO_FIRSTBYTE

       Return information about the first data unit of any matched  string,  for  a  non-anchored
       pattern.  (The  name  of  this  option  refers  to the 8-bit library, where data units are
       bytes.) The fourth argument should point to an int variable.

       If there is a fixed first value, for example, the  letter  "c"  from  a  pattern  such  as
       (cat|cow|coyote),  its  value  is returned. In the 8-bit library, the value is always less
       than 256; in the 16-bit library the value can be up to 0xffff.

       If there is no fixed first value, and if either

       (a) the pattern was compiled with the PCRE_MULTILINE option, and every branch starts  with
       "^", or

       (b)  every  branch  of the pattern starts with ".*" and PCRE_DOTALL is not set (if it were
       set, the pattern would be anchored),

       -1 is returned, indicating that the pattern matches only at the start of a subject  string
       or  after  any newline within the string. Otherwise -2 is returned. For anchored patterns,
       -2 is returned.

         PCRE_INFO_FIRSTTABLE

       If the pattern was studied, and this resulted in  the  construction  of  a  256-bit  table
       indicating a fixed set of values for the first data unit in any matching string, a pointer
       to the table is returned. Otherwise NULL is returned. The fourth argument should point  to
       an unsigned char * variable.

         PCRE_INFO_HASCRORLF

       Return  1  if the pattern contains any explicit matches for CR or LF characters, otherwise
       0. The fourth argument should point to an int variable. An  explicit  match  is  either  a
       literal CR or LF character, or \r or \n.

         PCRE_INFO_JCHANGED

       Return  1  if  the  (?J)  or (?-J) option setting is used in the pattern, otherwise 0. The
       fourth argument should point to an int variable. (?J) and (?-J) set and  unset  the  local
       PCRE_DUPNAMES option, respectively.

         PCRE_INFO_JIT

       Return  1  if  the  pattern  was  studied  with  one  of the JIT options, and just-in-time
       compiling was successful. The fourth argument should point to an int  variable.  A  return
       value  of  0  means that JIT support is not available in this version of PCRE, or that the
       pattern was not studied with a JIT option, or that the JIT compiler could not handle  this
       particular  pattern.  See  the pcrejit documentation for details of what can and cannot be
       handled.

         PCRE_INFO_JITSIZE

       If the pattern was successfully studied with a JIT option, return  the  size  of  the  JIT
       compiled  code,  otherwise  return  zero.  The  fourth  argument  should point to a size_t
       variable.

         PCRE_INFO_LASTLITERAL

       Return the value of the rightmost literal data unit that must exist in any matched string,
       other  than  at  its  start, if such a value has been recorded. The fourth argument should
       point to an int variable. If there  is  no  such  value,  -1  is  returned.  For  anchored
       patterns,  a  last  literal  value  is  recorded  only if it follows something of variable
       length. For example, for the pattern /^a\d+z\d+/  the  returned  value  is  "z",  but  for
       /^a\dz\d/ the returned value is -1.

         PCRE_INFO_MAXLOOKBEHIND

       Return  the number of characters (NB not bytes) in the longest lookbehind assertion in the
       pattern. Note that the simple assertions \b and \B  require  a  one-character  lookbehind.
       This  information  is  useful when doing multi-segment matching using the partial matching
       facilities.

         PCRE_INFO_MINLENGTH

       If the pattern was studied and a minimum length for matching subject strings was computed,
       its  value  is  returned.  Otherwise  the  returned  value is -1. The value is a number of
       characters, which in UTF-8 mode may be different from the  number  of  bytes.  The  fourth
       argument  should  point  to  an int variable. A non-negative value is a lower bound to the
       length of any matching string. There may not  be  any  strings  of  that  length  that  do
       actually match, but every string that does match is at least that long.

         PCRE_INFO_NAMECOUNT
         PCRE_INFO_NAMEENTRYSIZE
         PCRE_INFO_NAMETABLE

       PCRE  supports  the  use of named as well as numbered capturing parentheses. The names are
       just an additional way of  identifying  the  parentheses,  which  still  acquire  numbers.
       Several   convenience  functions  such  as  pcre_get_named_substring()  are  provided  for
       extracting captured substrings by name. It is also possible to extract the data  directly,
       by  first  converting  the name to a number in order to access the correct pointers in the
       output vector (described with pcre_exec() below). To do the conversion, you  need  to  use
       the name-to-number map, which is described by these three values.

       The  map  consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT gives the number
       of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size of each entry; both of these return
       an   int   value.   The   entry   size   depends  on  the  length  of  the  longest  name.
       PCRE_INFO_NAMETABLE returns a pointer to the first entry of the table. This is  a  pointer
       to  char  in  the 8-bit library, where the first two bytes of each entry are the number of
       the capturing parenthesis, most significant byte first. In the 16-bit library, the pointer
       points  to 16-bit data units, the first of which contains the parenthesis number. The rest
       of the entry is the corresponding name, zero terminated.

       The names are in alphabetical order. Duplicate names may appear if (?| is used  to  create
       multiple  groups with the same number, as described in the section on duplicate subpattern
       numbers in the pcrepattern page. Duplicate names for subpatterns  with  different  numbers
       are  permitted  only if PCRE_DUPNAMES is set. In all cases of duplicate names, they appear
       in the table in the order in which they were found in the pattern. In the absence  of  (?|
       this  is the order of increasing number; when (?| is used this is not necessarily the case
       because later subpatterns may have lower numbers.

       As a simple example of  the  name/number  table,  consider  the  following  pattern  after
       compilation  by the 8-bit library (assume PCRE_EXTENDED is set, so white space - including
       newlines - is ignored):

         (?<date> (?<year>(\d\d)?\d\d) -
         (?<month>\d\d) - (?<day>\d\d) )

       There are four named subpatterns, so the table has four entries, and  each  entry  in  the
       table  is  eight  bytes  long.  The  table is as follows, with non-printing bytes shows in
       hexadecimal, and undefined bytes shown as ??:

         00 01 d  a  t  e  00 ??
         00 05 d  a  y  00 ?? ??
         00 04 m  o  n  t  h  00
         00 02 y  e  a  r  00 ??

       When writing code to extract data from named subpatterns  using  the  name-to-number  map,
       remember  that  the  length  of  the  entries  is likely to be different for each compiled
       pattern.

         PCRE_INFO_OKPARTIAL

       Return 1 if the pattern can be used for partial matching with  pcre_exec(),  otherwise  0.
       The  fourth  argument  should  point  to  an  int variable. From release 8.00, this always
       returns 1, because the restrictions that previously applied to partial matching have  been
       lifted. The pcrepartial documentation gives details of partial matching.

         PCRE_INFO_OPTIONS

       Return  a  copy  of  the  options with which the pattern was compiled. The fourth argument
       should point to an unsigned long int variable. These option bits are  those  specified  in
       the  call to pcre_compile(), modified by any top-level option settings at the start of the
       pattern itself. In other words, they are the options that will be in force  when  matching
       starts.  For  example,  if the pattern /(?im)abc(?-i)d/ is compiled with the PCRE_EXTENDED
       option, the result is PCRE_CASELESS, PCRE_MULTILINE, and PCRE_EXTENDED.

       A pattern is automatically anchored by PCRE if all of  its  top-level  alternatives  begin
       with one of the following:

         ^     unless PCRE_MULTILINE is set
         \A    always
         \G    always
         .*    if PCRE_DOTALL is set and there are no back
                 references to the subpattern in which .* appears

       For   such   patterns,   the   PCRE_ANCHORED  bit  is  set  in  the  options  returned  by
       pcre_fullinfo().

         PCRE_INFO_SIZE

       Return the size of the compiled pattern in bytes (for both libraries). The fourth argument
       should  point  to  a  size_t  variable.  This  value does not include the size of the pcre
       structure that is returned by pcre_compile(). The value that is passed as the argument  to
       pcre_malloc() when pcre_compile() is getting memory in which to place the compiled data is
       the value returned by this option plus the size of the pcre structure. Studying a compiled
       pattern, with or without JIT, does not alter the value returned by this option.

         PCRE_INFO_STUDYSIZE

       Return  the  size  in  bytes  of  the  data  block pointed to by the study_data field in a
       pcre_extra block. If pcre_extra is NULL, or there is no study data, zero is returned.  The
       fourth  argument  should  point  to  a  size_t  variable.  The  study_data field is set by
       pcre_study() to record information that will speed up matching (see the  section  entitled
       "Studying a pattern" above). The format of the study_data block is private, but its length
       is made available via this  option  so  that  it  can  be  saved  and  restored  (see  the
       pcreprecompile documentation for details).

REFERENCE COUNTS


       int pcre_refcount(pcre *code, int adjust);

       The  pcre_refcount() function is used to maintain a reference count in the data block that
       contains a compiled pattern. It is provided for the benefit of applications  that  operate
       in  an  object-oriented  manner, where different parts of the application may be using the
       same compiled pattern, but you want to free the block when they are all done.

       When a pattern is compiled, the reference count field  is  initialized  to  zero.   It  is
       changed  only by calling this function, whose action is to add the adjust value (which may
       be positive or negative) to it. The yield of the function is the new value.  However,  the
       value  of the count is constrained to lie between 0 and 65535, inclusive. If the new value
       is outside these limits, it is forced to the appropriate limit value.

       Except when it is zero, the reference count is not correctly preserved  if  a  pattern  is
       compiled  on  one host and then transferred to a host whose byte-order is different. (This
       seems a highly unlikely scenario.)

MATCHING A PATTERN: THE TRADITIONAL FUNCTION


       int pcre_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize);

       The function pcre_exec() is called to match a subject string against a  compiled  pattern,
       which  is passed in the code argument. If the pattern was studied, the result of the study
       should be passed in the extra argument. You can call pcre_exec() with the  same  code  and
       extra  arguments  as  many  times as you like, in order to match different subject strings
       with the same pattern.

       This function is the main matching facility of the library, and it operates in a Perl-like
       manner.  For  specialist  use  there  is  also  an alternative matching function, which is
       described below in the section about the pcre_dfa_exec() function.

       In most applications, the pattern will have been compiled (and optionally studied) in  the
       same process that calls pcre_exec(). However, it is possible to save compiled patterns and
       study data, and then use them later in different processes,  possibly  even  on  different
       hosts. For a discussion about this, see the pcreprecompile documentation.

       Here is an example of a simple call to pcre_exec():

         int rc;
         int ovector[30];
         rc = pcre_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           30);            /* number of elements (NOT size in bytes) */

   Extra data for pcre_exec()

       If  the  extra  argument  is  not  NULL,  it  must  point  to a pcre_extra data block. The
       pcre_study() function returns such a block (when it doesn't return NULL), but you can also
       create  one  for  yourself,  and  pass  additional information in it. The pcre_extra block
       contains the following fields (not necessarily in this order):

         unsigned long int flags;
         void *study_data;
         void *executable_jit;
         unsigned long int match_limit;
         unsigned long int match_limit_recursion;
         void *callout_data;
         const unsigned char *tables;
         unsigned char **mark;

       In the 16-bit version of this structure, the mark field has type "PCRE_UCHAR16 **".

       The flags field is used to specify which of the other fields are set. The flag bits are:

         PCRE_EXTRA_CALLOUT_DATA
         PCRE_EXTRA_EXECUTABLE_JIT
         PCRE_EXTRA_MARK
         PCRE_EXTRA_MATCH_LIMIT
         PCRE_EXTRA_MATCH_LIMIT_RECURSION
         PCRE_EXTRA_STUDY_DATA
         PCRE_EXTRA_TABLES

       Other  flag  bits  should  be  set  to  zero.  The  study_data  field  and  sometimes  the
       executable_jit  field  are  set  in the pcre_extra block that is returned by pcre_study(),
       together with the appropriate flag bits. You should not set these yourself,  but  you  may
       add to the block by setting other fields and their corresponding flag bits.

       The  match_limit  field provides a means of preventing PCRE from using up a vast amount of
       resources when running patterns that are not going to match, but which have a  very  large
       number  of possibilities in their search trees. The classic example is a pattern that uses
       nested unlimited repeats.

       Internally, pcre_exec()  uses  a  function  called  match(),  which  it  calls  repeatedly
       (sometimes  recursively).  The  limit set by match_limit is imposed on the number of times
       this function is called during a match, which has the effect of  limiting  the  amount  of
       backtracking  that  can take place. For patterns that are not anchored, the count restarts
       from zero for each position in the subject string.

       When pcre_exec() is called with a pattern that was successfully studied with a JIT option,
       the  way that the matching is executed is entirely different.  However, there is still the
       possibility of runaway matching that goes on for a very long time, and so the  match_limit
       value  is  also  used in this case (but in a different way) to limit how long the matching
       can continue.

       The default value for the limit can be set when PCRE is built; the default default  is  10
       million,  which  handles  all  but the most extreme cases. You can override the default by
       suppling  pcre_exec()  with  a  pcre_extra  block  in  which  match_limit  is   set,   and
       PCRE_EXTRA_MATCH_LIMIT  is  set  in the flags field. If the limit is exceeded, pcre_exec()
       returns PCRE_ERROR_MATCHLIMIT.

       The match_limit_recursion field is similar to match_limit, but  instead  of  limiting  the
       total  number  of  times  that  match()  is  called, it limits the depth of recursion. The
       recursion depth is a smaller number than the total number of calls, because not all  calls
       to  match()  are  recursive.   This  limit  is  of  use  only  if  it  is set smaller than
       match_limit.

       Limiting the recursion depth limits the amount of machine stack that can be used, or, when
       PCRE  has been compiled to use memory on the heap instead of the stack, the amount of heap
       memory that can be used. This limit is not relevant, and is ignored, when matching is done
       using JIT compiled code.

       The  default  value  for  match_limit_recursion can be set when PCRE is built; the default
       default is the same value as the default for match_limit. You can override the default  by
       suppling  pcre_exec()  with  a pcre_extra block in which match_limit_recursion is set, and
       PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field.  If  the  limit  is  exceeded,
       pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.

       The callout_data field is used in conjunction with the "callout" feature, and is described
       in the pcrecallout documentation.

       The tables field is used to pass a character tables pointer to pcre_exec(); this overrides
       the  value  that  is stored with the compiled pattern. A non-NULL value is stored with the
       compiled pattern only if custom tables were supplied to pcre_compile()  via  its  tableptr
       argument.   If  NULL  is  passed  to  pcre_exec()  using  this mechanism, it forces PCRE's
       internal tables to be used. This facility is helpful when re-using patterns that have been
       saved after compiling with an external set of tables, because the external tables might be
       at a different address when pcre_exec() is called. See  the  pcreprecompile  documentation
       for a discussion of saving compiled patterns for later use.

       If  PCRE_EXTRA_MARK  is  set  in the flags field, the mark field must be set to point to a
       suitable variable. If  the  pattern  contains  any  backtracking  control  verbs  such  as
       (*MARK:NAME),  and  the  execution ends up with a name to pass back, a pointer to the name
       string (zero terminated) is placed in the variable pointed to by the mark field. The names
       are within the compiled pattern; if you wish to retain such a name you must copy it before
       freeing the memory of a compiled pattern. If there is no name to pass back,  the  variable
       pointed  to  by  the  mark  field  is set to NULL. For details of the backtracking control
       verbs, see the section entitled "Backtracking control" in the pcrepattern documentation.

   Option bits for pcre_exec()

       The unused bits of the options argument for pcre_exec() must be zero. The only  bits  that
       may  be  set are PCRE_ANCHORED, PCRE_NEWLINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
       PCRE_NOTEMPTY_ATSTART, PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_HARD,  and
       PCRE_PARTIAL_SOFT.

       If  the  pattern  was  successfully  studied  with  one  of the just-in-time (JIT) compile
       options, the only supported options for JIT execution are PCRE_NO_UTF8_CHECK, PCRE_NOTBOL,
       PCRE_NOTEOL,      PCRE_NOTEMPTY,     PCRE_NOTEMPTY_ATSTART,     PCRE_PARTIAL_HARD,     and
       PCRE_PARTIAL_SOFT. If an unsupported option is used, JIT execution  is  disabled  and  the
       normal interpretive code in pcre_exec() is run.

         PCRE_ANCHORED

       The PCRE_ANCHORED option limits pcre_exec() to matching at the first matching position. If
       a pattern was compiled with PCRE_ANCHORED, or turned out to be anchored by virtue  of  its
       contents, it cannot be made unachored at matching time.

         PCRE_BSR_ANYCRLF
         PCRE_BSR_UNICODE

       These  options (which are mutually exclusive) control what the \R escape sequence matches.
       The choice is either to match only CR, LF, or  CRLF,  or  to  match  any  Unicode  newline
       sequence.  These  options  override the choice that was made or defaulted when the pattern
       was compiled.

         PCRE_NEWLINE_CR
         PCRE_NEWLINE_LF
         PCRE_NEWLINE_CRLF
         PCRE_NEWLINE_ANYCRLF
         PCRE_NEWLINE_ANY

       These options override the newline definition  that  was  chosen  or  defaulted  when  the
       pattern  was  compiled.  For  details, see the description of pcre_compile() above. During
       matching, the newline choice affects the behaviour of  the  dot,  circumflex,  and  dollar
       metacharacters.  It  may  also  alter the way the match position is advanced after a match
       failure for an unanchored pattern.

       When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY  is  set,  and  a  match
       attempt  for  an unanchored pattern fails when the current position is at a CRLF sequence,
       and the pattern contains no explicit matches for CR or LF characters, the  match  position
       is advanced by two characters instead of one, in other words, to after the CRLF.

       The  above  rule  is  a  compromise that makes the most common cases work as expected. For
       example, if the pattern is .+A (and the PCRE_DOTALL option is not set), it does not  match
       the  string  "\r\nA"  because, after failing at the start, it skips both the CR and the LF
       before retrying. However, the pattern [\r\n]A does match that string, because it  contains
       an  explicit  CR  or  LF  reference, and so advances only by one character after the first
       failure.

       An explicit match for CR of LF is either a literal appearance of one of those  characters,
       or  one  of the \r or \n escape sequences. Implicit matches such as [^X] do not count, nor
       does \s (which includes CR and LF in the characters that it matches).

       Notwithstanding the above, anomalous effects may still occur when CRLF is a valid  newline
       sequence and explicit \r or \n escapes appear in the pattern.

         PCRE_NOTBOL

       This option specifies that first character of the subject string is not the beginning of a
       line, so the circumflex metacharacter should not match before  it.  Setting  this  without
       PCRE_MULTILINE  (at  compile  time)  causes circumflex never to match. This option affects
       only the behaviour of the circumflex metacharacter. It does not affect \A.

         PCRE_NOTEOL

       This option specifies that the end of the subject string is not the end of a line, so  the
       dollar  metacharacter  should  not  match  it  nor  (except  in  multiline mode) a newline
       immediately before it. Setting this without PCRE_MULTILINE (at compile time) causes dollar
       never  to  match.  This  option affects only the behaviour of the dollar metacharacter. It
       does not affect \Z or \z.

         PCRE_NOTEMPTY

       An empty string is not considered to be a valid match if this option is set. If there  are
       alternatives  in  the  pattern,  they  are  tried. If all the alternatives match the empty
       string, the entire match fails. For example, if the pattern

         a?b?

       is applied to a string not beginning with "a" or "b", it matches an empty  string  at  the
       start  of  the  subject. With PCRE_NOTEMPTY set, this match is not valid, so PCRE searches
       further into the string for occurrences of "a" or "b".

         PCRE_NOTEMPTY_ATSTART

       This is like PCRE_NOTEMPTY, except that an empty string match that is not at the start  of
       the  subject  is permitted. If the pattern is anchored, such a match can occur only if the
       pattern contains \K.

       Perl has no direct equivalent of PCRE_NOTEMPTY or PCRE_NOTEMPTY_ATSTART, but it does  make
       a  special  case  of  a pattern match of the empty string within its split() function, and
       when using the /g modifier. It is possible to emulate Perl's behaviour  after  matching  a
       null  string by first trying the match again at the same offset with PCRE_NOTEMPTY_ATSTART
       and PCRE_ANCHORED, and then if that fails, by advancing the starting  offset  (see  below)
       and trying an ordinary match again. There is some code that demonstrates how to do this in
       the pcredemo sample program. In the most general case, you have to check  to  see  if  the
       newline  convention  recognizes CRLF as a newline, and if so, and the current character is
       CR followed by LF, advance the starting offset by two characters instead of one.

         PCRE_NO_START_OPTIMIZE

       There are a number of optimizations that pcre_exec() uses at the  start  of  a  match,  in
       order  to  speed up the process. For example, if it is known that an unanchored match must
       start with a specific character, it searches the subject for  that  character,  and  fails
       immediately  if  it  cannot  find it, without actually running the main matching function.
       This means that a special item such as  (*COMMIT)  at  the  start  of  a  pattern  is  not
       considered  until  after  a  suitable  starting  point  for the match has been found. When
       callouts or (*MARK) items are in use, these "start-up" optimizations can cause them to  be
       skipped  if the pattern is never actually used. The start-up optimizations are in effect a
       pre-scan of the subject that takes place before the pattern is run.

       The PCRE_NO_START_OPTIMIZE option disables the start-up  optimizations,  possibly  causing
       performance  to  suffer,  but  ensuring  that in cases where the result is "no match", the
       callouts do occur, and that items such as (*COMMIT) and (*MARK) are  considered  at  every
       possible  starting  position  in  the  subject string. If PCRE_NO_START_OPTIMIZE is set at
       compile time, it cannot be unset at  matching  time.  The  use  of  PCRE_NO_START_OPTIMIZE
       disables JIT execution; when it is set, matching is always done using interpretively.

       Setting  PCRE_NO_START_OPTIMIZE  can change the outcome of a matching operation.  Consider
       the pattern

         (*COMMIT)ABC

       When this is compiled, PCRE records the fact that a match must start  with  the  character
       "A".  Suppose  the  subject  string is "DEFABC". The start-up optimization scans along the
       subject, finds "A" and runs the first match attempt from there. The (*COMMIT)  item  means
       that  the  pattern  must match the current starting position, which in this case, it does.
       However, if the same match is run with PCRE_NO_START_OPTIMIZE set, the initial scan  along
       the  subject  string does not happen. The first match attempt is run starting from "D" and
       when this fails, (*COMMIT) prevents any further matches being tried, so the overall result
       is  "no  match".  If  the pattern is studied, more start-up optimizations may be used. For
       example, a minimum length for the subject may be recorded. Consider the pattern

         (*MARK:A)(X|Y)

       The minimum length for a match is one character. If the subject is "ABC",  there  will  be
       attempts  to  match "ABC", "BC", "C", and then finally an empty string.  If the pattern is
       studied, the final attempt does not take place, because PCRE knows that the subject is too
       short,  and  so the (*MARK) is never encountered.  In this case, studying the pattern does
       not affect the overall match result, which is still "no match", but  it  does  affect  the
       auxiliary information that is returned.

         PCRE_NO_UTF8_CHECK

       When  PCRE_UTF8  is  set at compile time, the validity of the subject as a UTF-8 string is
       automatically checked when pcre_exec() is  subsequently  called.   The  entire  string  is
       checked  before any other processing takes place. The value of startoffset is also checked
       to ensure that it points to the start of a UTF-8 character. There is  a  discussion  about
       the  validity of UTF-8 strings in the pcreunicode page. If an invalid sequence of bytes is
       found, pcre_exec() returns the error PCRE_ERROR_BADUTF8 or, if  PCRE_PARTIAL_HARD  is  set
       and  the problem is a truncated character at the end of the subject, PCRE_ERROR_SHORTUTF8.
       In both cases, information about the precise nature of the error may also be returned (see
       the  descriptions  of  these  errors  in  the  section  entitled  Error return values from
       pcre_exec() below).  If startoffset contains a value that does not point to the start of a
       UTF-8 character (or to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is returned.

       If  you  already  know  that  your subject is valid, and you want to skip these checks for
       performance reasons, you can set the PCRE_NO_UTF8_CHECK option when  calling  pcre_exec().
       You  might  want  to do this for the second and subsequent calls to pcre_exec() if you are
       making repeated calls to find all the matches in a single  subject  string.  However,  you
       should  be  sure  that the value of startoffset points to the start of a character (or the
       end of the subject). When PCRE_NO_UTF8_CHECK is set, the  effect  of  passing  an  invalid
       string  as  a  subject  or  an invalid value of startoffset is undefined. Your program may
       crash.

         PCRE_PARTIAL_HARD
         PCRE_PARTIAL_SOFT

       These  options  turn  on  the  partial  matching  feature.  For  backwards  compatibility,
       PCRE_PARTIAL  is a synonym for PCRE_PARTIAL_SOFT. A partial match occurs if the end of the
       subject string is reached successfully, but there are not  enough  subject  characters  to
       complete  the match. If this happens when PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is
       set, matching continues by testing any remaining alternatives. Only if no  complete  match
       can be found is PCRE_ERROR_PARTIAL returned instead of PCRE_ERROR_NOMATCH. In other words,
       PCRE_PARTIAL_SOFT says that the caller is prepared to handle a partial match, but only  if
       no complete match can be found.

       If  PCRE_PARTIAL_HARD  is  set, it overrides PCRE_PARTIAL_SOFT. In this case, if a partial
       match is found, pcre_exec() immediately returns  PCRE_ERROR_PARTIAL,  without  considering
       any  other alternatives. In other words, when PCRE_PARTIAL_HARD is set, a partial match is
       considered to be more important that an alternative complete match.

       In both cases, the portion of the string that was inspected when  the  partial  match  was
       found  is set as the first matching string. There is a more detailed discussion of partial
       and multi-segment matching, with examples, in the pcrepartial documentation.

   The string to be matched by pcre_exec()

       The subject string is passed to pcre_exec() as a pointer in subject, a length in bytes  in
       length, and a starting byte offset in startoffset. If this is negative or greater than the
       length of the subject, pcre_exec() returns PCRE_ERROR_BADOFFSET. When the starting  offset
       is zero, the search for a match starts at the beginning of the subject, and this is by far
       the most common case. In UTF-8 mode, the byte offset must point to the start  of  a  UTF-8
       character  (or the end of the subject). Unlike the pattern string, the subject may contain
       binary zero bytes.

       A non-zero starting offset is useful when searching for another match in the same  subject
       by  calling  pcre_exec() again after a previous success.  Setting startoffset differs from
       just passing over a shortened string and setting PCRE_NOTBOL in the case of a pattern that
       begins with any kind of lookbehind. For example, consider the pattern

         \Biss\B

       which  finds  occurrences of "iss" in the middle of words. (\B matches only if the current
       position in the subject is not a word boundary.) When applied to the  string  "Mississipi"
       the  first  call to pcre_exec() finds the first occurrence. If pcre_exec() is called again
       with just the remainder of the subject, namely "issipi", it does not match, because \B  is
       always  false at the start of the subject, which is deemed to be a word boundary. However,
       if pcre_exec() is passed the entire string again, but with startoffset set to 4, it  finds
       the  second  occurrence  of  "iss" because it is able to look behind the starting point to
       discover that it is preceded by a letter.

       Finding all the matches in a subject is tricky when the pattern can match an empty string.
       It  is possible to emulate Perl's /g behaviour by first trying the match again at the same
       offset, with the PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED options, and then if that  fails,
       advancing  the starting offset and trying an ordinary match again. There is some code that
       demonstrates how to do this in the pcredemo sample program. In the most general case,  you
       have  to  check  to see if the newline convention recognizes CRLF as a newline, and if so,
       and the current character is CR followed  by  LF,  advance  the  starting  offset  by  two
       characters instead of one.

       If a non-zero starting offset is passed when the pattern is anchored, one attempt to match
       at the given offset is made. This can only succeed if the pattern  does  not  require  the
       match to be at the start of the subject.

   How pcre_exec() returns captured substrings

       In  general,  a pattern matches a certain portion of the subject, and in addition, further
       substrings from the subject may be picked out by parts of the pattern. Following the usage
       in  Jeffrey  Friedl's  book,  this  is  called "capturing" in what follows, and the phrase
       "capturing subpattern" is used for a fragment of a pattern that  picks  out  a  substring.
       PCRE supports several other kinds of parenthesized subpattern that do not cause substrings
       to be captured.

       Captured substrings are returned to the caller via a vector of integers whose  address  is
       passed  in ovector. The number of elements in the vector is passed in ovecsize, which must
       be a non-negative number. Note: this argument is NOT the size of ovector in bytes.

       The first two-thirds of the  vector  is  used  to  pass  back  captured  substrings,  each
       substring using a pair of integers. The remaining third of the vector is used as workspace
       by pcre_exec() while matching capturing subpatterns, and is not available for passing back
       information.  The number passed in ovecsize should always be a multiple of three. If it is
       not, it is rounded down.

       When a match is successful, information about captured substrings is returned in pairs  of
       integers,  starting  at  the  beginning of ovector, and continuing up to two-thirds of its
       length at the most. The first element of each pair is set to the byte offset of the  first
       character  in a substring, and the second is set to the byte offset of the first character
       after the end of a substring. Note: these values are always byte offsets,  even  in  UTF-8
       mode. They are not character counts.

       The first pair of integers, ovector[0] and ovector[1], identify the portion of the subject
       string matched by the entire pattern. The next  pair  is  used  for  the  first  capturing
       subpattern,  and  so  on.  The  value returned by pcre_exec() is one more than the highest
       numbered pair that has been set.  For example, if two substrings have been  captured,  the
       returned  value  is  3.  If  there  are  no capturing subpatterns, the return value from a
       successful match is 1, indicating that just the first pair of offsets has been set.

       If a capturing subpattern is matched repeatedly, it is the last portion of the string that
       it matched that is returned.

       If  the  vector is too small to hold all the captured substring offsets, it is used as far
       as possible (up to two-thirds of its length), and the function returns a value of zero. If
       neither the actual string matched nor any captured substrings are of interest, pcre_exec()
       may be called with ovector passed as NULL and ovecsize as zero. However,  if  the  pattern
       contains  back  references  and  the  ovector  is  not  big enough to remember the related
       substrings, PCRE has to get additional memory for use during matching. Thus it is  usually
       advisable to supply an ovector of reasonable size.

       There  are some cases where zero is returned (indicating vector overflow) when in fact the
       vector is exactly the right size for the final match. For example, consider the pattern

         (a)(?:(b)c|bd)

       If a vector of 6 elements (allowing for only 1 captured substring) is given  with  subject
       string  "abd", pcre_exec() will try to set the second captured string, thereby recording a
       vector overflow, before failing to match "c" and backing up to try the second alternative.
       The zero return, however, does correctly indicate that the maximum number of slots (namely
       2) have been filled. In similar cases where there is temporary  overflow,  but  the  final
       number of used slots is actually less than the maximum, a non-zero value is returned.

       The  pcre_fullinfo() function can be used to find out how many capturing subpatterns there
       are in a compiled pattern. The smallest size for ovector that will allow  for  n  captured
       substrings,  in  addition to the offsets of the substring matched by the whole pattern, is
       (n+1)*3.

       It is possible for capturing subpattern number n+1 to match some part of the subject  when
       subpattern n has not been used at all. For example, if the string "abc" is matched against
       the pattern (a|(z))(bc) the return from the function is 4, and subpatterns  1  and  3  are
       matched, but 2 is not. When this happens, both values in the offset pairs corresponding to
       unused subpatterns are set to -1.

       Offset values that correspond to unused subpatterns at the end of the expression are  also
       set  to -1. For example, if the string "abc" is matched against the pattern (abc)(x(yz)?)?
       subpatterns 2 and 3 are not matched. The return  from  the  function  is  2,  because  the
       highest  used  capturing  subpattern  number  is 1, and the offsets for for the second and
       third capturing subpatterns (assuming the vector is large enough, of course)  are  set  to
       -1.

       Note:  Elements  in  the  first  two-thirds of ovector that do not correspond to capturing
       parentheses in the pattern are never changed. That is, if a pattern contains  n  capturing
       parentheses,  no  more  than ovector[0] to ovector[2n+1] are set by pcre_exec(). The other
       elements (in the first two-thirds) retain whatever values they previously had.

       Some convenience functions are provided for extracting the captured substrings as separate
       strings. These are described below.

   Error return values from pcre_exec()

       If  pcre_exec()  fails,  it  returns  a  negative number. The following are defined in the
       header file:

         PCRE_ERROR_NOMATCH        (-1)

       The subject string did not match the pattern.

         PCRE_ERROR_NULL           (-2)

       Either code or subject was passed as NULL, or ovector was NULL and ovecsize was not zero.

         PCRE_ERROR_BADOPTION      (-3)

       An unrecognized bit was set in the options argument.

         PCRE_ERROR_BADMAGIC       (-4)

       PCRE stores a 4-byte "magic number" at the start of the compiled code, to catch  the  case
       when  it  is  passed  a  junk pointer and to detect when a pattern that was compiled in an
       environment of one endianness is run in an environment with the other endianness. This  is
       the error that PCRE gives when the magic number is not present.

         PCRE_ERROR_UNKNOWN_OPCODE (-5)

       While  running the pattern match, an unknown item was encountered in the compiled pattern.
       This error could be caused by a bug in PCRE or by overwriting of the compiled pattern.

         PCRE_ERROR_NOMEMORY       (-6)

       If a pattern contains back references, but the ovector that is passed  to  pcre_exec()  is
       not  big  enough to remember the referenced substrings, PCRE gets a block of memory at the
       start of matching to use for this purpose. If the call via pcre_malloc() fails, this error
       is given. The memory is automatically freed at the end of matching.

       This error is also given if pcre_stack_malloc() fails in pcre_exec(). This can happen only
       when PCRE has been compiled with --disable-stack-for-recursion.

         PCRE_ERROR_NOSUBSTRING    (-7)

       This   error   is   used   by   the   pcre_copy_substring(),   pcre_get_substring(),   and
       pcre_get_substring_list() functions (see below). It is never returned by pcre_exec().

         PCRE_ERROR_MATCHLIMIT     (-8)

       The  backtracking  limit,  as specified by the match_limit field in a pcre_extra structure
       (or defaulted) was reached. See the description above.

         PCRE_ERROR_CALLOUT        (-9)

       This error is never generated by pcre_exec() itself. It is provided  for  use  by  callout
       functions  that  want to yield a distinctive error code. See the pcrecallout documentation
       for details.

         PCRE_ERROR_BADUTF8        (-10)

       A string that contains an invalid UTF-8 byte sequence was passed as  a  subject,  and  the
       PCRE_NO_UTF8_CHECK  option  was not set. If the size of the output vector (ovecsize) is at
       least 2, the byte offset to the start of the the invalid UTF-8 character is placed in  the
       first  element,  and  a  reason code is placed in the second element. The reason codes are
       listed in the following section.  For backward compatibility, if PCRE_PARTIAL_HARD is  set
       and  the  problem is a truncated UTF-8 character at the end of the subject (reason codes 1
       to 5), PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.

         PCRE_ERROR_BADUTF8_OFFSET (-11)

       The UTF-8 byte sequence that was passed as a subject was checked and  found  to  be  valid
       (the PCRE_NO_UTF8_CHECK option was not set), but the value of startoffset did not point to
       the beginning of a UTF-8 character or the end of the subject.

         PCRE_ERROR_PARTIAL        (-12)

       The subject string did not  match,  but  it  did  match  partially.  See  the  pcrepartial
       documentation for details of partial matching.

         PCRE_ERROR_BADPARTIAL     (-13)

       This  code  is no longer in use. It was formerly returned when the PCRE_PARTIAL option was
       used with a compiled  pattern  containing  items  that  were  not  supported  for  partial
       matching. From release 8.00 onwards, there are no restrictions on partial matching.

         PCRE_ERROR_INTERNAL       (-14)

       An  unexpected internal error has occurred. This error could be caused by a bug in PCRE or
       by overwriting of the compiled pattern.

         PCRE_ERROR_BADCOUNT       (-15)

       This error is given if the value of the ovecsize argument is negative.

         PCRE_ERROR_RECURSIONLIMIT (-21)

       The internal recursion limit,  as  specified  by  the  match_limit_recursion  field  in  a
       pcre_extra structure (or defaulted) was reached. See the description above.

         PCRE_ERROR_BADNEWLINE     (-23)

       An invalid combination of PCRE_NEWLINE_xxx options was given.

         PCRE_ERROR_BADOFFSET      (-24)

       The  value of startoffset was negative or greater than the length of the subject, that is,
       the value in length.

         PCRE_ERROR_SHORTUTF8      (-25)

       This error is returned instead of PCRE_ERROR_BADUTF8 when the subject string ends  with  a
       truncated  UTF-8 character and the PCRE_PARTIAL_HARD option is set.  Information about the
       failure is returned as for PCRE_ERROR_BADUTF8. It is in fact  sufficient  to  detect  this
       case,  but  this  special  error code for PCRE_PARTIAL_HARD precedes the implementation of
       returned information; it is retained for backwards compatibility.

         PCRE_ERROR_RECURSELOOP    (-26)

       This error is returned when pcre_exec() detects  a  recursion  loop  within  the  pattern.
       Specifically,  it  means  that  either  the  whole pattern or a subpattern has been called
       recursively for the second time at the same position in the subject  string.  Some  simple
       patterns that might do this are detected and faulted at compile time, but more complicated
       cases, in particular mutual  recursions  between  two  different  subpatterns,  cannot  be
       detected until run time.

         PCRE_ERROR_JIT_STACKLIMIT (-27)

       This  error  is  returned when a pattern that was successfully studied using a JIT compile
       option is being matched, but the memory available for the just-in-time processing stack is
       not large enough. See the pcrejit documentation for more details.

         PCRE_ERROR_BADMODE        (-28)

       This  error  is  given  if a pattern that was compiled by the 8-bit library is passed to a
       16-bit library function, or vice versa.

         PCRE_ERROR_BADENDIANNESS  (-29)

       This error is given if a pattern that was compiled and saved is reloaded on  a  host  with
       different  endianness.  The utility function pcre_pattern_to_host_byte_order() can be used
       to convert such a pattern so that it runs on the new host.

       Error numbers -16 to -20, -22, and -30 are not used by pcre_exec().

   Reason codes for invalid UTF-8 strings

       This section applies only to the 8-bit library.  The  corresponding  information  for  the
       16-bit library is given in the pcre16 page.

       When  pcre_exec()  returns either PCRE_ERROR_BADUTF8 or PCRE_ERROR_SHORTUTF8, and the size
       of the output vector (ovecsize) is at least 2, the offset of  the  start  of  the  invalid
       UTF-8  character  is  placed  in the first output vector element (ovector[0]) and a reason
       code is placed in the second element (ovector[1]). The reason codes are given names in the
       pcre.h header file:

         PCRE_UTF8_ERR1
         PCRE_UTF8_ERR2
         PCRE_UTF8_ERR3
         PCRE_UTF8_ERR4
         PCRE_UTF8_ERR5

       The  string  ends  with a truncated UTF-8 character; the code specifies how many bytes are
       missing (1 to 5). Although RFC 3629 restricts UTF-8 characters to  be  no  longer  than  4
       bytes,  the encoding scheme (originally defined by RFC 2279) allows for up to 6 bytes, and
       this is checked first; hence the possibility of 4 or 5 missing bytes.

         PCRE_UTF8_ERR6
         PCRE_UTF8_ERR7
         PCRE_UTF8_ERR8
         PCRE_UTF8_ERR9
         PCRE_UTF8_ERR10

       The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of the  character  do
       not have the binary value 0b10 (that is, either the most significant bit is 0, or the next
       bit is 1).

         PCRE_UTF8_ERR11
         PCRE_UTF8_ERR12

       A character that is valid by the RFC 2279 rules is either 5 or 6 bytes  long;  these  code
       points are excluded by RFC 3629.

         PCRE_UTF8_ERR13

       A 4-byte character has a value greater than 0x10fff; these code points are excluded by RFC
       3629.

         PCRE_UTF8_ERR14

       A 3-byte character has a value in the range 0xd800 to 0xdfff; this range  of  code  points
       are reserved by RFC 3629 for use with UTF-16, and so are excluded from UTF-8.

         PCRE_UTF8_ERR15
         PCRE_UTF8_ERR16
         PCRE_UTF8_ERR17
         PCRE_UTF8_ERR18
         PCRE_UTF8_ERR19

       A  2-,  3-,  4-, 5-, or 6-byte character is "overlong", that is, it codes for a value that
       can be represented by fewer bytes, which is invalid. For example, the two bytes 0xc0, 0xae
       give the value 0x2e, whose correct coding uses just one byte.

         PCRE_UTF8_ERR20

       The  two most significant bits of the first byte of a character have the binary value 0b10
       (that is, the most significant bit is 1 and the second is 0). Such a byte can only validly
       occur as the second or subsequent byte of a multi-byte character.

         PCRE_UTF8_ERR21

       The  first byte of a character has the value 0xfe or 0xff. These values can never occur in
       a valid UTF-8 string.

EXTRACTING CAPTURED SUBSTRINGS BY NUMBER


       int pcre_copy_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber, char *buffer,
            int buffersize);

       int pcre_get_substring(const char *subject, int *ovector,
            int stringcount, int stringnumber,
            const char **stringptr);

       int pcre_get_substring_list(const char *subject,
            int *ovector, int stringcount, const char ***listptr);

       Captured substrings can be accessed directly by using the offsets returned by  pcre_exec()
       in  ovector.  For  convenience, the functions pcre_copy_substring(), pcre_get_substring(),
       and pcre_get_substring_list() are provided for  extracting  captured  substrings  as  new,
       separate, zero-terminated strings. These functions identify substrings by number. The next
       section describes functions for extracting named substrings.

       A substring that contains a binary zero is correctly extracted  and  has  a  further  zero
       added  on the end, but the result is not, of course, a C string.  However, you can process
       such a string by referring to the length that is  returned  by  pcre_copy_substring()  and
       pcre_get_substring().   Unfortunately,  the  interface to pcre_get_substring_list() is not
       adequate for handling strings containing binary zeros, because the end of the final string
       is not independently indicated.

       The  first  three  arguments are the same for all three of these functions: subject is the
       subject string that has just been successfully matched, ovector is a pointer to the vector
       of  integer  offsets  that  was  passed  to  pcre_exec(), and stringcount is the number of
       substrings that were captured by the match,  including  the  substring  that  matched  the
       entire regular expression. This is the value returned by pcre_exec() if it is greater than
       zero. If pcre_exec() returned zero, indicating that it ran out of space  in  ovector,  the
       value  passed  as  stringcount  should  be the number of elements in the vector divided by
       three.

       The functions pcre_copy_substring() and pcre_get_substring() extract a  single  substring,
       whose number is given as stringnumber. A value of zero extracts the substring that matched
       the  entire  pattern,  whereas  higher  values  extract  the  captured   substrings.   For
       pcre_copy_substring(),  the  string  is  placed  in  buffer,  whose  length  is  given  by
       buffersize, while  for  pcre_get_substring()  a  new  block  of  memory  is  obtained  via
       pcre_malloc,  and  its address is returned via stringptr. The yield of the function is the
       length of the string, not including the terminating zero, or one of these error codes:

         PCRE_ERROR_NOMEMORY       (-6)

       The buffer was too small for pcre_copy_substring(), or the attempt to  get  memory  failed
       for pcre_get_substring().

         PCRE_ERROR_NOSUBSTRING    (-7)

       There is no substring whose number is stringnumber.

       The pcre_get_substring_list() function extracts all available substrings and builds a list
       of pointers to them. All this is done in a single block of memory  that  is  obtained  via
       pcre_malloc.  The  address  of the memory block is returned via listptr, which is also the
       start of the list of string pointers. The end of the list is marked by a NULL pointer. The
       yield of the function is zero if all went well, or the error code

         PCRE_ERROR_NOMEMORY       (-6)

       if the attempt to get the memory block failed.

       When  any  of  these  functions encounter a substring that is unset, which can happen when
       capturing subpattern number n+1 matches some part of the subject, but subpattern n has not
       been  used  at  all, they return an empty string. This can be distinguished from a genuine
       zero-length substring by inspecting the appropriate offset in ovector, which  is  negative
       for unset substrings.

       The  two convenience functions pcre_free_substring() and pcre_free_substring_list() can be
       used  to  free  the  memory  returned  by  a  previous  call  of  pcre_get_substring()  or
       pcre_get_substring_list(),  respectively.  They  do  nothing  more  than call the function
       pointed to by pcre_free, which of course could  be  called  directly  from  a  C  program.
       However,  PCRE  is  used  in some situations where it is linked via a special interface to
       another programming language that cannot use pcre_free directly; it  is  for  these  cases
       that the functions are provided.

EXTRACTING CAPTURED SUBSTRINGS BY NAME


       int pcre_get_stringnumber(const pcre *code,
            const char *name);

       int pcre_copy_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            char *buffer, int buffersize);

       int pcre_get_named_substring(const pcre *code,
            const char *subject, int *ovector,
            int stringcount, const char *stringname,
            const char **stringptr);

       To  extract  a  substring by name, you first have to find associated number.  For example,
       for this pattern

         (a+)b(?<xxx>\d+)...

       the number of the subpattern called "xxx" is  2.  If  the  name  is  known  to  be  unique
       (PCRE_DUPNAMES  was  not  set),  you  can  find  the  number  from  the  name  by  calling
       pcre_get_stringnumber(). The first argument is the compiled pattern, and the second is the
       name.  The  yield of the function is the subpattern number, or PCRE_ERROR_NOSUBSTRING (-7)
       if there is no subpattern of that name.

       Given the number, you can extract the substring directly, or  use  one  of  the  functions
       described  in  the previous section. For convenience, there are also two functions that do
       the whole job.

       Most of the arguments of pcre_copy_named_substring()  and  pcre_get_named_substring()  are
       the  same  as those for the similarly named functions that extract by number. As these are
       described in the previous section, they are not re-described  here.  There  are  just  two
       differences:

       First, instead of a substring number, a substring name is given. Second, there is an extra
       argument, given at the start, which is a pointer to the compiled pattern. This  is  needed
       in order to gain access to the name-to-number translation table.

       These  functions  call  pcre_get_stringnumber(),  and  if  it  succeeds,  they  then  call
       pcre_copy_substring() or pcre_get_substring(), as appropriate. NOTE: If  PCRE_DUPNAMES  is
       set  and  there  are duplicate names, the behaviour may not be what you want (see the next
       section).

       Warning: If the pattern uses the (?| feature to set up multiple subpatterns with the  same
       number,  as  described  in  the section on duplicate subpattern numbers in the pcrepattern
       page, you cannot use names to distinguish the different subpatterns, because names are not
       included  in  the  compiled code. The matching process uses only numbers. For this reason,
       the use of different names for subpatterns of the same number causes an error  at  compile
       time.

DUPLICATE SUBPATTERN NAMES


       int pcre_get_stringtable_entries(const pcre *code,
            const char *name, char **first, char **last);

       When  a  pattern  is compiled with the PCRE_DUPNAMES option, names for subpatterns are not
       required to be unique. (Duplicate names are always allowed for subpatterns with  the  same
       number,  created by using the (?| feature. Indeed, if such subpatterns are named, they are
       required to use the same names.)

       Normally, patterns with duplicate names are such that in any one match, only  one  of  the
       named subpatterns participates. An example is shown in the pcrepattern documentation.

       When  duplicates  are  present, pcre_copy_named_substring() and pcre_get_named_substring()
       return the first substring corresponding to the given name that is set. If none  are  set,
       PCRE_ERROR_NOSUBSTRING  (-7) is returned; no data is returned. The pcre_get_stringnumber()
       function returns one of the numbers that are associated with  the  name,  but  it  is  not
       defined which it is.

       If  you want to get full details of all captured substrings for a given name, you must use
       the pcre_get_stringtable_entries() function. The first argument is the  compiled  pattern,
       and  the  second  is  the  name.  The third and fourth are pointers to variables which are
       updated by the function. After it has run, they point to the first and last entries in the
       name-to-number  table  for  the given name. The function itself returns the length of each
       entry, or PCRE_ERROR_NOSUBSTRING (-7) if there are  none.  The  format  of  the  table  is
       described  above in the section entitled Information about a pattern above.  Given all the
       relevant entries for the name, you can extract  each  of  their  numbers,  and  hence  the
       captured data, if any.

FINDING ALL POSSIBLE MATCHES


       The  traditional  matching  function uses a similar algorithm to Perl, which stops when it
       finds the first match, starting at a given point in the subject. If you want to  find  all
       possible  matches,  or the longest possible match, consider using the alternative matching
       function (see below) instead. If you cannot use the alternative function, but  still  need
       to  find all possible matches, you can kludge it up by making use of the callout facility,
       which is described in the pcrecallout documentation.

       What you have to do is to insert a callout right at the end of  the  pattern.   When  your
       callout function is called, extract and save the current matched substring. Then return 1,
       which forces pcre_exec() to backtrack and try other alternatives. Ultimately, when it runs
       out of matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.

OBTAINING AN ESTIMATE OF STACK USAGE


       Matching  certain  patterns  using  pcre_exec()  can  use a lot of process stack, which in
       certain environments can be rather limited in size. Some users find it helpful to have  an
       estimate  of  the  amount of stack that is used by pcre_exec(), to help them set recursion
       limits, as described in the pcrestack  documentation.  The  estimate  that  is  output  by
       pcretest  when called with the -m and -C options is obtained by calling pcre_exec with the
       values NULL, NULL, NULL, -999, and -999 for its first five arguments.

       Normally, if its first argument is NULL,  pcre_exec()  immediately  returns  the  negative
       error  code  PCRE_ERROR_NULL,  but  with this special combination of arguments, it returns
       instead a negative number whose absolute value is the  approximate  stack  frame  size  in
       bytes.  (A  negative  number  is used so that it is clear that no match has happened.) The
       value is approximate because in some cases, recursive  calls  to  pcre_exec()  occur  when
       there are one or two additional variables on the stack.

       If  PCRE  has  been compiled to use the heap instead of the stack for recursion, the value
       returned is the size of each block that is obtained from the heap.

MATCHING A PATTERN: THE ALTERNATIVE FUNCTION


       int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
            const char *subject, int length, int startoffset,
            int options, int *ovector, int ovecsize,
            int *workspace, int wscount);

       The function pcre_dfa_exec() is called to  match  a  subject  string  against  a  compiled
       pattern,  using a matching algorithm that scans the subject string just once, and does not
       backtrack. This has  different  characteristics  to  the  normal  algorithm,  and  is  not
       compatible  with  Perl.  Some  of  the  features  of  PCRE  patterns  are  not  supported.
       Nevertheless, there are times when this kind of matching can be useful. For  a  discussion
       of  the  two  matching  algorithms,  and  a list of features that pcre_dfa_exec() does not
       support, see the pcrematching documentation.

       The arguments for the pcre_dfa_exec() function are the same as for pcre_exec(),  plus  two
       extras.  The ovector argument is used in a different way, and this is described below. The
       other common arguments are used in the same way as for pcre_exec(), so  their  description
       is not repeated here.

       The  two  additional  arguments  provide  workspace for the function. The workspace vector
       should contain at least 20 elements. It is  used  for  keeping  track  of  multiple  paths
       through  the  pattern  tree. More workspace will be needed for patterns and subjects where
       there are a lot of potential matches.

       Here is an example of a simple call to pcre_dfa_exec():

         int rc;
         int ovector[10];
         int wspace[20];
         rc = pcre_dfa_exec(
           re,             /* result of pcre_compile() */
           NULL,           /* we didn't study the pattern */
           "some string",  /* the subject string */
           11,             /* the length of the subject string */
           0,              /* start at offset 0 in the subject */
           0,              /* default options */
           ovector,        /* vector of integers for substring information */
           10,             /* number of elements (NOT size in bytes) */
           wspace,         /* working space vector */
           20);            /* number of elements (NOT size in bytes) */

   Option bits for pcre_dfa_exec()

       The unused bits of the options argument for pcre_dfa_exec() must be zero.  The  only  bits
       that   may   be   set   are  PCRE_ANCHORED,  PCRE_NEWLINE_xxx,  PCRE_NOTBOL,  PCRE_NOTEOL,
       PCRE_NOTEMPTY,      PCRE_NOTEMPTY_ATSTART,      PCRE_NO_UTF8_CHECK,      PCRE_BSR_ANYCRLF,
       PCRE_BSR_UNICODE,     PCRE_NO_START_OPTIMIZE,     PCRE_PARTIAL_HARD,    PCRE_PARTIAL_SOFT,
       PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART.  All but the last four of these are  exactly  the
       same as for pcre_exec(), so their description is not repeated here.

         PCRE_PARTIAL_HARD
         PCRE_PARTIAL_SOFT

       These  have  the  same  general  effect  as  they  do for pcre_exec(), but the details are
       slightly  different.  When  PCRE_PARTIAL_HARD  is  set  for  pcre_dfa_exec(),  it  returns
       PCRE_ERROR_PARTIAL  if  the  end of the subject is reached and there is still at least one
       matching possibility that requires  additional  characters.  This  happens  even  if  some
       complete  matches  have  also  been  found. When PCRE_PARTIAL_SOFT is set, the return code
       PCRE_ERROR_NOMATCH is converted into PCRE_ERROR_PARTIAL if  the  end  of  the  subject  is
       reached,  there  have  been  no complete matches, but there is still at least one matching
       possibility. The portion of the string that was inspected when the longest  partial  match
       was  found  is  set  as the first matching string in both cases.  There is a more detailed
       discussion of partial and  multi-segment  matching,  with  examples,  in  the  pcrepartial
       documentation.

         PCRE_DFA_SHORTEST

       Setting  the  PCRE_DFA_SHORTEST option causes the matching algorithm to stop as soon as it
       has found one match.  Because  of  the  way  the  alternative  algorithm  works,  this  is
       necessarily  the  shortest  possible  match  at  the  first possible matching point in the
       subject string.

         PCRE_DFA_RESTART

       When pcre_dfa_exec() returns a partial match, it  is  possible  to  call  it  again,  with
       additional   subject   characters,   and  have  it  continue  with  the  same  match.  The
       PCRE_DFA_RESTART option requests this action; when it is set, the  workspace  and  wscount
       options  must  reference  the same vector as before because data about the match so far is
       left in them after a partial match. There is more  discussion  of  this  facility  in  the
       pcrepartial documentation.

   Successful returns from pcre_dfa_exec()

       When pcre_dfa_exec() succeeds, it may have matched more than one substring in the subject.
       Note, however, that all the matches from one run of the function start at the  same  point
       in  the subject. The shorter matches are all initial substrings of the longer matches. For
       example, if the pattern

         <.*>

       is matched against the string

         This is <something> <something else> <something further> no more

       the three matched strings are

         <something>
         <something> <something else>
         <something> <something else> <something further>

       On success, the yield of the function is a number greater than zero, which is  the  number
       of matched substrings. The substrings themselves are returned in ovector. Each string uses
       two elements; the first is the offset to the start, and the second is the  offset  to  the
       end.  In fact, all the strings have the same start offset. (Space could have been saved by
       giving this only once, but it was decided  to  retain  some  compatibility  with  the  way
       pcre_exec() returns data, even though the meaning of the strings is different.)

       The  strings are returned in reverse order of length; that is, the longest matching string
       is given first. If there were too many matches to fit  into  ovector,  the  yield  of  the
       function  is  zero, and the vector is filled with the longest matches. Unlike pcre_exec(),
       pcre_dfa_exec() can use the entire ovector for returning matched strings.

   Error returns from pcre_dfa_exec()

       The pcre_dfa_exec() function returns a negative number when it fails.  Many of the  errors
       are the same as for pcre_exec(), and these are described above.  There are in addition the
       following errors that are specific to pcre_dfa_exec():

         PCRE_ERROR_DFA_UITEM      (-16)

       This return is given if pcre_dfa_exec() encounters an item in the pattern that it does not
       support, for instance, the use of \C or a back reference.

         PCRE_ERROR_DFA_UCOND      (-17)

       This  return  is  given  if  pcre_dfa_exec()  encounters a condition item that uses a back
       reference for the condition, or a test for recursion in a specific group.  These  are  not
       supported.

         PCRE_ERROR_DFA_UMLIMIT    (-18)

       This  return  is  given  if  pcre_dfa_exec() is called with an extra block that contains a
       setting of the match_limit or match_limit_recursion fields. This is not  supported  (these
       fields are meaningless for DFA matching).

         PCRE_ERROR_DFA_WSSIZE     (-19)

       This return is given if pcre_dfa_exec() runs out of space in the workspace vector.

         PCRE_ERROR_DFA_RECURSE    (-20)

       When  a recursive subpattern is processed, the matching function calls itself recursively,
       using private vectors for ovector and workspace. This error is given if the output  vector
       is not large enough. This should be extremely rare, as a vector of size 1000 is used.

         PCRE_ERROR_DFA_BADRESTART (-30)

       When  pcre_dfa_exec() is called with the PCRE_DFA_RESTART option, some plausibility checks
       are made on the contents of the workspace, which should contain data  about  the  previous
       partial match. If any of these checks fail, this error is given.

SEE ALSO


       pcre16(3),  pcrebuild(3),  pcrecallout(3), pcrecpp(3)(3), pcrematching(3), pcrepartial(3),
       pcreposix(3), pcreprecompile(3), pcresample(3), pcrestack(3).

AUTHOR


       Philip Hazel
       University Computing Service
       Cambridge CB2 3QH, England.

REVISION


       Last updated: 17 June 2012
       Copyright (c) 1997-2012 University of Cambridge.