Provided by: aircrack-ng_1.1-6_amd64 bug


       aireplay-ng - inject packets into a wireless network to generate traffic


       aireplay-ng [options] <replay interface>


       aireplay-ng  is used to inject/replay frames.  The primary function is to generate traffic
       for the later use in aircrack-ng  for  cracking  the  WEP  and  WPA-PSK  keys.  There  are
       different  attacks  which  can  cause  deauthentications  for the purpose of capturing WPA
       handshake data, fake authentications, Interactive packet replay, hand-crafted ARP  request
       injection  and  ARP-request  reinjection.  With  the  packetforge-ng tool it's possible to
       create arbitrary frames.

       aireplay-ng supports single-NIC injection/monitor.
       This feature needs driver patching.


       -H, --help
              Shows the help screen.

       Filter options:

       -b <bssid>
              MAC address of access point.

       -d <dmac>
              MAC address of destination.

       -s <smac>
              MAC address of source.

       -m <len>
              Minimum packet length.

       -n <len>
              Maximum packet length.

       -u <type>
              Frame control, type field.

       -v <subt>
              Frame control, subtype field.

       -t <tods>
              Frame control, "To" DS bit (0 or 1).

       -f <fromds>
              Frame control, "From" DS bit (0 or 1).

       -w <iswep>
              Frame control, WEP bit (0 or 1).

       -D     Disable AP Detection.

       Replay options:

       -x <nbpps>
              Number of packets per second.

       -p <fctrl>
              Set frame control word (hex).

       -a <bssid>
              Set Access Point MAC address.

       -c <dmac>
              Set destination MAC address.

       -h <smac>
              Set source MAC address.

       -g <nb_packets>
              Change ring buffer size (default: 8 packets). The minimum is 1.

       -F     Choose first matching packet.

       -e <essid>
              Fake Authentication attack: Set  target  SSID  (see  below).  For  SSID  containing
              special              characters,              see              http://www.aircrack-

       -o <npackets>
              Fake  Authentication attack: Set the number of packets for every authentication and
              association attempt (Default: 1). 0 means auto

       -q <seconds>
              Fake Authentication attack:  Set  the  time  between  keep-alive  packets  in  fake
              authentication mode.

       -y <prga>
              Fake  Authentication  attack:  Specifies  the  keystream  file  for fake shared key

       -T n   Fake Authentication attack: Exit if fake authentication fails 'n' time(s).

       -j     ARP Replay attack : inject FromDS pakets (see below).

       -k <IP>
              Fragmentation attack: Set destination IP in fragments.

       -l <IP>
              Fragmentation attack: Set source IP in fragments.

       -B     Test option: bitrate test.

       Source options:

       -i <iface>
              Capture packets from this interface.

       -r <file>
              Extract packets from this pcap file.

       Miscellaneous options:

       -R     disable /dev/rtc usage.

       --ignore-negative-one if the interface's channel can't be determined ignore the  mismatch,
       needed for unpatched cfg80211

       Attack modes:

       -0 <count>, --deauth=<count>
              This  attack  sends  deauthentication  packets  to  one  or  more clients which are
              currently associated with a particular access point. Deauthenticating  clients  can
              be  done for a number of reasons: Recovering a hidden ESSID. This is an ESSID which
              is not being broadcast. Another term for this is "cloaked"  or  Capturing  WPA/WPA2
              handshakes  by  forcing clients to reauthenticate or Generate ARP requests (Windows
              clients sometimes flush their ARP cache when disconnected).  Of course, this attack
              is  totally  useless  if  there  are  no  associated  wireless  client  or  on fake

       -1 <delay>, --fakeauth=<delay>
              The fake authentication  attack  allows  you  to  perform  the  two  types  of  WEP
              authentication  (Open  System  and Shared Key) plus associate with the access point
              (AP). This is useful is only useful when you need  an  associated  MAC  address  in
              various  aireplay-ng attacks and there is currently no associated client. It should
              be noted that the fake authentication attack does NOT  generate  any  ARP  packets.
              Fake  authentication  cannot be used to authenticate/associate with WPA/WPA2 Access

       -2, --interactive
              This attack allows you to choose a specific packet for replaying  (injecting).  The
              attack  can  obtain packets to replay from two sources. The first being a live flow
              of packets from your wireless card. The second being from a pcap file. Reading from
              a  file is an often overlooked feature of aireplay-ng. This allows you read packets
              from other capture sessions or quite often, various attacks generate pcap files for
              easy  reuse.  A  common use of reading a file containing a packet your created with

       -3, --arpreplay
              The classic ARP request replay attack is the most effective  way  to  generate  new
              initialization  vectors  (IVs), and works very reliably. The program listens for an
              ARP packet then retransmits it back to the access point. This, in turn, causes  the
              access  point  to  repeat the ARP packet with a new IV. The program retransmits the
              same ARP packet over and over. However, each ARP  packet  repeated  by  the  access
              point  has  a new IVs. It is all these new IVs which allow you to determine the WEP

       -4, --chopchop
              This attack, when successful, can decrypt a WEP data  packet  without  knowing  the
              key. It can even work against dynamic WEP. This attack does not recover the WEP key
              itself, but merely reveals the plaintext.  However,  some  access  points  are  not
              vulnerable to this attack. Some may seem vulnerable at first but actually drop data
              packets shorter that 60 bytes. If the access point drops packets  shorter  than  42
              bytes,  aireplay tries to guess the rest of the missing data, as far as the headers
              are predictable. If an IP  packet  is  captured,  it  additionally  checks  if  the
              checksum  of  the  header  is  correct after guessing the missing parts of it. This
              attack requires at least one WEP data packet.

       -5, --fragment
              This attack, when  successful,  can  obtain  1500  bytes  of  PRGA  (pseudo  random
              generation  algorithm). This attack does not recover the WEP key itself, but merely
              obtains the PRGA. The PRGA can then be used to generate packets with packetforge-ng
              which are in turn used for various injection attacks. It requires at least one data
              packet to be received from the access point in order to initiate the attack.

       -6, --caffe-latte
              In general, for an attack to work, the attacker has to be in the range of an AP and
              a  connected client (fake or real). Caffe Latte attacks allows one to gather enough
              packets to crack a WEP key without the need of an AP, it just need a client  to  be
              in range.

       -7, --cfrag
              This  attack  turns  IP  or  ARP packets from a client into ARP request against the
              client. This attack works especially well against ad-hoc networks. As well  it  can
              be used against softAP clients and normal AP clients.

       -9, --test
              Tests injection and quality.



              -  Can  obtain  the  full  packet  length  of  1500  bytes  XOR. This means you can
              subsequently pretty well create any size of packet.
              - May work where chopchop does not
              - Is extremely fast. It yields the XOR stream extremely quickly when successful.

              - Setup to execute the attack is more subject to the device drivers.  For  example,
              Atheros  does  not  generate the correct packets unless the wireless card is set to
              the mac address you are spoofing.
              - You need to be physically closer to the access point since  if  any  packets  are
              lost then the attack fails.


              - May work where frag does not work.

              - Cannot be used against every access point.
              - The maximum XOR bits is limited to the length of the packet you chopchop against.
              - Much slower then the fragmentation attack.


       This  manual  page  was written by Adam Cecile <> for the Debian system
       (but may be used by others).  Permission is granted to copy, distribute and/or modify this
       document under the terms of the GNU General Public License, Version 2 or any later version
       published by the Free Software Foundation On Debian systems, the complete text of the  GNU
       General Public License can be found in /usr/share/common-licenses/GPL.