Provided by: liblapack-doc-man_3.6.0-2ubuntu2_all bug

NAME

       zhpgvx.f -

SYNOPSIS

   Functions/Subroutines
       subroutine zhpgvx (ITYPE, JOBZ, RANGE, UPLO, N, AP, BP, VL, VU, IL, IU, ABSTOL, M, W, Z,
           LDZ, WORK, RWORK, IWORK, IFAIL, INFO)
           ZHPGVX

Function/Subroutine Documentation

   subroutine zhpgvx (integer ITYPE, character JOBZ, character RANGE, character UPLO, integer N,
       complex*16, dimension( * ) AP, complex*16, dimension( * ) BP, double precision VL, double
       precision VU, integer IL, integer IU, double precision ABSTOL, integer M, double
       precision, dimension( * ) W, complex*16, dimension( ldz, * ) Z, integer LDZ, complex*16,
       dimension( * ) WORK, double precision, dimension( * ) RWORK, integer, dimension( * )
       IWORK, integer, dimension( * ) IFAIL, integer INFO)
       ZHPGVX

       Purpose:

            ZHPGVX computes selected eigenvalues and, optionally, eigenvectors
            of a complex generalized Hermitian-definite eigenproblem, of the form
            A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
            B are assumed to be Hermitian, stored in packed format, and B is also
            positive definite.  Eigenvalues and eigenvectors can be selected by
            specifying either a range of values or a range of indices for the
            desired eigenvalues.

       Parameters:
           ITYPE

                     ITYPE is INTEGER
                     Specifies the problem type to be solved:
                     = 1:  A*x = (lambda)*B*x
                     = 2:  A*B*x = (lambda)*x
                     = 3:  B*A*x = (lambda)*x

           JOBZ

                     JOBZ is CHARACTER*1
                     = 'N':  Compute eigenvalues only;
                     = 'V':  Compute eigenvalues and eigenvectors.

           RANGE

                     RANGE is CHARACTER*1
                     = 'A': all eigenvalues will be found;
                     = 'V': all eigenvalues in the half-open interval (VL,VU]
                            will be found;
                     = 'I': the IL-th through IU-th eigenvalues will be found.

           UPLO

                     UPLO is CHARACTER*1
                     = 'U':  Upper triangles of A and B are stored;
                     = 'L':  Lower triangles of A and B are stored.

           N

                     N is INTEGER
                     The order of the matrices A and B.  N >= 0.

           AP

                     AP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     A, packed columnwise in a linear array.  The j-th column of A
                     is stored in the array AP as follows:
                     if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
                     if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

                     On exit, the contents of AP are destroyed.

           BP

                     BP is COMPLEX*16 array, dimension (N*(N+1)/2)
                     On entry, the upper or lower triangle of the Hermitian matrix
                     B, packed columnwise in a linear array.  The j-th column of B
                     is stored in the array BP as follows:
                     if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
                     if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.

                     On exit, the triangular factor U or L from the Cholesky
                     factorization B = U**H*U or B = L*L**H, in the same storage
                     format as B.

           VL

                     VL is DOUBLE PRECISION

           VU

                     VU is DOUBLE PRECISION

                     If RANGE='V', the lower and upper bounds of the interval to
                     be searched for eigenvalues. VL < VU.
                     Not referenced if RANGE = 'A' or 'I'.

           IL

                     IL is INTEGER

           IU

                     IU is INTEGER

                     If RANGE='I', the indices (in ascending order) of the
                     smallest and largest eigenvalues to be returned.
                     1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
                     Not referenced if RANGE = 'A' or 'V'.

           ABSTOL

                     ABSTOL is DOUBLE PRECISION
                     The absolute error tolerance for the eigenvalues.
                     An approximate eigenvalue is accepted as converged
                     when it is determined to lie in an interval [a,b]
                     of width less than or equal to

                             ABSTOL + EPS *   max( |a|,|b| ) ,

                     where EPS is the machine precision.  If ABSTOL is less than
                     or equal to zero, then  EPS*|T|  will be used in its place,
                     where |T| is the 1-norm of the tridiagonal matrix obtained
                     by reducing AP to tridiagonal form.

                     Eigenvalues will be computed most accurately when ABSTOL is
                     set to twice the underflow threshold 2*DLAMCH('S'), not zero.
                     If this routine returns with INFO>0, indicating that some
                     eigenvectors did not converge, try setting ABSTOL to
                     2*DLAMCH('S').

           M

                     M is INTEGER
                     The total number of eigenvalues found.  0 <= M <= N.
                     If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.

           W

                     W is DOUBLE PRECISION array, dimension (N)
                     On normal exit, the first M elements contain the selected
                     eigenvalues in ascending order.

           Z

                     Z is COMPLEX*16 array, dimension (LDZ, N)
                     If JOBZ = 'N', then Z is not referenced.
                     If JOBZ = 'V', then if INFO = 0, the first M columns of Z
                     contain the orthonormal eigenvectors of the matrix A
                     corresponding to the selected eigenvalues, with the i-th
                     column of Z holding the eigenvector associated with W(i).
                     The eigenvectors are normalized as follows:
                     if ITYPE = 1 or 2, Z**H*B*Z = I;
                     if ITYPE = 3, Z**H*inv(B)*Z = I.

                     If an eigenvector fails to converge, then that column of Z
                     contains the latest approximation to the eigenvector, and the
                     index of the eigenvector is returned in IFAIL.
                     Note: the user must ensure that at least max(1,M) columns are
                     supplied in the array Z; if RANGE = 'V', the exact value of M
                     is not known in advance and an upper bound must be used.

           LDZ

                     LDZ is INTEGER
                     The leading dimension of the array Z.  LDZ >= 1, and if
                     JOBZ = 'V', LDZ >= max(1,N).

           WORK

                     WORK is COMPLEX*16 array, dimension (2*N)

           RWORK

                     RWORK is DOUBLE PRECISION array, dimension (7*N)

           IWORK

                     IWORK is INTEGER array, dimension (5*N)

           IFAIL

                     IFAIL is INTEGER array, dimension (N)
                     If JOBZ = 'V', then if INFO = 0, the first M elements of
                     IFAIL are zero.  If INFO > 0, then IFAIL contains the
                     indices of the eigenvectors that failed to converge.
                     If JOBZ = 'N', then IFAIL is not referenced.

           INFO

                     INFO is INTEGER
                     = 0:  successful exit
                     < 0:  if INFO = -i, the i-th argument had an illegal value
                     > 0:  ZPPTRF or ZHPEVX returned an error code:
                        <= N:  if INFO = i, ZHPEVX failed to converge;
                               i eigenvectors failed to converge.  Their indices
                               are stored in array IFAIL.
                        > N:   if INFO = N + i, for 1 <= i <= n, then the leading
                               minor of order i of B is not positive definite.
                               The factorization of B could not be completed and
                               no eigenvalues or eigenvectors were computed.

       Author:
           Univ. of Tennessee

           Univ. of California Berkeley

           Univ. of Colorado Denver

           NAG Ltd.

       Date:
           November 2015

       Contributors:
           Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Author

       Generated automatically by Doxygen for LAPACK from the source code.