Provided by: ocaml-nox_4.02.3-5ubuntu2_amd64

**NAME**

Complex - Complex numbers.

**Module**

Module Complex

**Documentation**

ModuleComplex:sigendComplex numbers. This module provides arithmetic operations on complex numbers. Complex numbers are represented by their real and imaginary parts (cartesian representation). Each part is represented by a double-precision floating-point number (typefloat).typet= { re :float; im :float; } The type of complex numbers.reis the real part andimthe imaginary part.valzero:tThe complex number0.valone:tThe complex number1.vali:tThe complex numberi.valneg:t->tUnary negation.valconj:t->tConjugate: given the complexx+i.y, returnsx-i.y.valadd:t->t->tAdditionvalsub:t->t->tSubtractionvalmul:t->t->tMultiplicationvalinv:t->tMultiplicative inverse (1/z).valdiv:t->t->tDivisionvalsqrt:t->tSquare root. The resultx+i.yis such thatx>0orx=0andy>=0. This function has a discontinuity along the negative real axis.valnorm2:t->floatNorm squared: givenx+i.y, returnsx^2+y^2.valnorm:t->floatNorm: givenx+i.y, returnssqrt(x^2+y^2).valarg:t->floatArgument. The argument of a complex number is the angle in the complex plane between the positive real axis and a line passing through zero and the number. This angle ranges from-pitopi. This function has a discontinuity along the negative real axis.valpolar:float->float->tpolarnormargreturns the complex having normnormand argumentarg.valexp:t->tExponentiation.expzreturnseto thezpower.vallog:t->tNatural logarithm (in basee).valpow:t->t->tPower function.powz1z2returnsz1to thez2power.