Provided by: libbsd-dev_0.8.2-1_amd64 bug


     MD5Init, MD5Update, MD5Pad, MD5Final, MD5Transform, MD5End, MD5File, MD5FileChunk, MD5Data —
     calculate the RSA Data Security, Inc., ``MD5'' message digest


     Utility functions from BSD systems (libbsd, -lbsd)


     #include <sys/types.h>
     #include <bsd/md5.h>

     MD5Init(MD5_CTX *context);

     MD5Update(MD5_CTX *context, const uint8_t *data, size_t len);

     MD5Pad(MD5_CTX *context);

     MD5Final(uint8_t digest[MD5_DIGEST_LENGTH], MD5_CTX *context);

     MD5Transform(uint32_t state[4], uint8_t block[MD5_BLOCK_LENGTH]);

     char *
     MD5End(MD5_CTX *context, char *buf);

     char *
     MD5File(const char *filename, char *buf);

     char *
     MD5FileChunk(const char *filename, char *buf, off_t offset, off_t length);

     char *
     MD5Data(const uint8_t *data, size_t len, char *buf);


     The MD5 functions calculate a 128-bit cryptographic checksum (digest) for any number of
     input bytes.  A cryptographic checksum is a one-way hash-function, that is, you cannot find
     (except by exhaustive search) the input corresponding to a particular output.  This net
     result is a “fingerprint” of the input-data, which doesn't disclose the actual input.

     MD4 has been broken; it should only be used where necessary for backward compatibility.  MD5
     has not yet (1999-02-11) been broken, but recent attacks have cast some doubt on its
     security properties.  The attacks on both MD4 and MD5 are both in the nature of finding
     “collisions” - that is, multiple inputs which hash to the same value; it is still unlikely
     for an attacker to be able to determine the exact original input given a hash value.

     The MD5Init(), MD5Update(), and MD5Final() functions are the core functions.  Allocate an
     MD5_CTX, initialize it with MD5Init(), run over the data with MD5Update(), and finally
     extract the result using MD5Final().

     The MD5Pad() function can be used to apply padding to the message digest as in MD5Final(),
     but the current context can still be used with MD5Update().

     The MD5Transform() function is used by MD5Update() to hash 512-bit blocks and forms the core
     of the algorithm.  Most programs should use the interface provided by MD5Init(), MD5Update()
     and MD5Final() instead of calling MD5Transform() directly.

     MD5End() is a wrapper for MD5Final() which converts the return value to an
     MD5_DIGEST_STRING_LENGTH-character (including the terminating '\0') ASCII string which
     represents the 128 bits in hexadecimal.

     MD5File() calculates the digest of a file, and uses MD5End() to return the result.  If the
     file cannot be opened, a null pointer is returned.

     MD5FileChunk() behaves like MD5File() but calculates the digest only for that portion of the
     file starting at offset and continuing for length bytes or until end of file is reached,
     whichever comes first.  A zero length can be specified to read until end of file.  A
     negative length or offset will be ignored.  MD5Data() calculates the digest of a chunk of
     data in memory, and uses MD5End() to return the result.

     When using MD5End(), MD5File(), MD5FileChunk(), or MD5Data(), the buf argument can be a null
     pointer, in which case the returned string is allocated with malloc(3) and subsequently must
     be explicitly deallocated using free(3) after use.  If the buf argument is non-null it must
     point to at least MD5_DIGEST_STRING_LENGTH characters of buffer space.


     cksum(1), md5(1), adler32(3), md4(3), rmd160(3), sfv(3), sha1(3), sha2(3), suma(3),
     tiger(3), whirlpool(3)

     R. Rivest, The MD4 Message-Digest Algorithm, RFC 1186.

     R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321.

     RSA Laboratories, Frequently Asked Questions About today's Cryptography,

     H. Dobbertin, "Alf Swindles Ann", CryptoBytes, 1(3):5, 1995.

     MJ. B. Robshaw, "On Recent Results for MD4 and MD5", RSA Laboratories Bulletin, 4, November
     12, 1996.

     Hans Dobbertin, Cryptanalysis of MD5 Compress.


     These functions appeared in OpenBSD 2.0.


     The original MD5 routines were developed by RSA Data Security, Inc., and published in the
     above references.  This code is derived from a public domain implementation written by Colin

     The MD5End(), MD5File(), MD5FileChunk(), and MD5Data() helper functions are derived from
     code written by Poul-Henning Kamp.


     Collisions have been found for the full versions of both MD4 and MD5 as well as strong
     attacks against the SHA-0 and SHA-1 family.  The use of sha2(3), or rmd160(3) is recommended