Provided by: erlang-manpages_18.3-dfsg-1ubuntu3.1_all bug

NAME

       public_key - API module for public-key infrastructure.

DESCRIPTION

       This  module  provides functions to handle public-key infrastructure. It can encode/decode
       different file formats (PEM, OpenSSH), sign and verify digital  signatures,  and  validate
       certificate paths and certificate revocation lists.

PUBLIC_KEY

         *
            Public  Key  requires  the  Crypto  and  ASN1  applications,  the  latter  as OTP R16
           (hopefully the runtime dependency on ASN1 will be removed again in the future).

         * Supports  RFC  5280   -  Internet  X.509  Public-Key  Infrastructure  Certificate  and
           Certificate Revocation List (CRL) Profile

         * Supports  PKCS-1  - RSA Cryptography Standard

         * Supports  DSS - Digital Signature Standard (DSA - Digital Signature Algorithm)

         * Supports  PKCS-3  - Diffie-Hellman Key Agreement Standard

         * Supports  PKCS-5 - Password-Based Cryptography Standard

         * Supports  PKCS-8 - Private-Key Information Syntax Standard

         * Supports  PKCS-10 - Certification Request Syntax Standard

DATA TYPES

   Note:
       All  records used in this Reference Manual are generated from ASN.1 specifications and are
       documented in the User's Guide. See Public-key Records.

       Use the following include directive to get access  to  the  records  and  constant  macros
       described here and in the User's Guide:

        -include_lib("public_key/include/public_key.hrl").

       The following data types are used in the functions for public_key:

         oid():
           Object identifier, a tuple of integers as generated by the ASN.1 compiler.

         boolean() =:
           true | false

         string() =:
           [bytes()]

         der_encoded() =:
           binary()

         pki_asn1_type() =:
           'Certificate'

           | 'RSAPrivateKey'

           | 'RSAPublicKey'

           | 'DSAPrivateKey'

           | 'DSAPublicKey'

           | 'DHParameter'

           | 'SubjectPublicKeyInfo'

           | 'PrivateKeyInfo'

           | 'CertificationRequest'

           | 'CertificateList'

           | 'ECPrivateKey'

           | 'EcpkParameters'

         pem_entry () =:
           {pki_asn1_type(), binary(), %% DER or encrypted DER

            not_encrypted | cipher_info()}

         cipher_info() = :
           {"RC2-CBC" | "DES-CBC" | "DES-EDE3-CBC", crypto:rand_bytes(8)

           | {#'PBEParameter{}, digest_type()} | #'PBES2-params'{}}

         public_key() =:
           rsa_public_key() | dsa_public_key() | ec_public_key()

         private_key() =:
           rsa_private_key() | dsa_private_key() | ec_private_key()

         rsa_public_key() =:
           #'RSAPublicKey'{}

         rsa_private_key() =:
           #'RSAPrivateKey'{}

         dsa_public_key() =:
           {integer(), #'Dss-Parms'{}}

         dsa_private_key() =:
           #'DSAPrivateKey'{}

         ec_public_key():
           = {#'ECPoint'{}, #'EcpkParameters'{} | {namedCurve, oid()}}

         ec_private_key() =:
           #'ECPrivateKey'{}

         public_crypt_options() =:
           [{rsa_pad, rsa_padding()}]

         rsa_padding() =:
           'rsa_pkcs1_padding'

           | 'rsa_pkcs1_oaep_padding'

           | 'rsa_no_padding'

         digest_type() = :
           Union of rsa_digest_type(), dss_digest_type(), and ecdsa_digest_type().

         rsa_digest_type() = :
           'md5' | 'sha' | 'sha224' | 'sha256' | 'sha384' | 'sha512'

         dss_digest_type() = :
           'sha'

         ecdsa_digest_type() = :
           'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'

         crl_reason() = :
           unspecified

           | keyCompromise

           | cACompromise

           | affiliationChanged

           | superseded

           | cessationOfOperation

           | certificateHold

           | privilegeWithdrawn

           | aACompromise

         issuer_name() =:
           {rdnSequence,[#'AttributeTypeAndValue'{}]}

         ssh_file() =:
           openssh_public_key

           | rfc4716_public_key

           | known_hosts

           | auth_keys

EXPORTS

       compute_key(OthersKey, MyKey)->
       compute_key(OthersKey, MyKey, Params)->

              Types:

                 OthersKey = #'ECPoint'{} | binary(), MyKey = #'ECPrivateKey'{} | binary()
                 Params = #'DHParameter'{}

              Computes shared secret.

       decrypt_private(CipherText, Key) -> binary()
       decrypt_private(CipherText, Key, Options) -> binary()

              Types:

                 CipherText = binary()
                 Key = rsa_private_key()
                 Options = public_crypt_options()

              Public-key decryption using the private key. See also crypto:private_decrypt/4

       decrypt_public(CipherText, Key) - > binary()
       decrypt_public(CipherText, Key, Options) - > binary()

              Types:

                 CipherText = binary()
                 Key = rsa_public_key()
                 Options = public_crypt_options()

              Public-key decryption using the public key. See also crypto:public_decrypt/4

       der_decode(Asn1type, Der) -> term()

              Types:

                 Asn1Type = atom()
                   ASN.1 type present in the Public Key applications ASN.1 specifications.
                 Der = der_encoded()

              Decodes a public-key ASN.1 DER encoded entity.

       der_encode(Asn1Type, Entity) -> der_encoded()

              Types:

                 Asn1Type = atom()
                   ASN.1 type present in the Public Key applications ASN.1 specifications.
                 Entity = term()
                   Erlang representation of Asn1Type

              Encodes a public-key entity with ASN.1 DER encoding.

       dh_gex_group(MinSize,   SuggestedSize,   MaxSize,   Groups)   ->   {ok,   {Size,Group}}  |
       {error,Error}

              Types:

                 MinSize = positive_integer()
                 SuggestedSize = positive_integer()
                 MaxSize = positive_integer()
                 Groups = undefined | [{Size,[{G,P}]}]
                 Size = positive_integer()
                 Group = {G,P}
                 G = positive_integer()
                 P = positive_integer()

              Selects a group for Diffie-Hellman key exchange with the  key  size  in  the  range
              MinSize...MaxSize and as close to SuggestedSize as possible. If Groups == undefined
              a default set will be used, otherwise the group is selected from Groups.

              First a size, as close as possible to SuggestedSize, is selected.  Then  one  group
              with  that  key  size  is randomly selected from the specified set of groups. If no
              size within the limits of MinSize and MaxSize is available,  {error,no_group_found}
              is returned.

              The default set of groups is listed in lib/public_key/priv/moduli. This file may be
              regenerated like this:

                   $> cd $ERL_TOP/lib/public_key/priv/
                   $> generate
                       ---- wait until all background jobs has finished. It may take several days !
                   $> cat moduli-* > moduli
                   $> cd ..; make

       encrypt_private(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_private_key()

              Public-key encryption using the private key. See also crypto:private_encrypt/4.

       encrypt_public(PlainText, Key) -> binary()

              Types:

                 PlainText = binary()
                 Key = rsa_public_key()

              Public-key encryption using the public key. See also crypto:public_encrypt/4.

       generate_key(Params) -> {Public::binary(), Private::binary()} | #'ECPrivateKey'{}

              Types:

                 Params = #'DHParameter'{} | {namedCurve, oid()} | #'ECParameters'{}

              Generates a new keypair.

       pem_decode(PemBin) -> [pem_entry()]

              Types:

                 PemBin = binary()
                   Example {ok, PemBin} = file:read_file("cert.pem").

              Decodes PEM binary data and returns entries as ASN.1 DER encoded entities.

       pem_encode(PemEntries) -> binary()

              Types:

                  PemEntries = [pem_entry()]

              Creates a PEM binary.

       pem_entry_decode(PemEntry) -> term()
       pem_entry_decode(PemEntry, Password) -> term()

              Types:

                 PemEntry = pem_entry()
                 Password = string()

              Decodes a PEM entry. pem_decode/1 returns a list of PEM entries. Notice that if the
              PEM  entry  is  of  type  'SubjectPublickeyInfo',  it  is  further  decoded  to  an
              rsa_public_key() or dsa_public_key().

       pem_entry_encode(Asn1Type, Entity) -> pem_entry()
       pem_entry_encode(Asn1Type, Entity, {CipherInfo, Password}) -> pem_entry()

              Types:

                 Asn1Type = pki_asn1_type()
                 Entity = term()
                   Erlang representation of  Asn1Type.  If  Asn1Type  is  'SubjectPublicKeyInfo',
                   Entity  must  be  either  an  rsa_public_key()  or a dsa_public_key() and this
                   function creates the appropriate 'SubjectPublicKeyInfo' entry.
                 CipherInfo = cipher_info()
                 Password = string()

              Creates a PEM entry that can be feed to pem_encode/1.

       pkix_decode_cert(Cert, otp|plain) -> #'Certificate'{} | #'OTPCertificate'{}

              Types:

                 Cert = der_encoded()

              Decodes an ASN.1 DER-encoded PKIX certificate. Option otp uses the customized ASN.1
              specification  OTP-PKIX.asn1  for  decoding and also recursively decode most of the
              standard parts.

       pkix_encode(Asn1Type, Entity, otp | plain) -> der_encoded()

              Types:

                 Asn1Type = atom()
                   The ASN.1 type can be 'Certificate', 'OTPCertificate' or a subtype of either.
                 Entity = #'Certificate'{} | #'OTPCertificate'{} | a valid subtype

              DER encodes a PKIX x509 certificate or part of such a  certificate.  This  function
              must  be  used  for  encoding  certificates  or  parts  of  certificates  that  are
              decoded/created in the otp format, whereas  for  the  plain  format  this  function
              directly calls der_encode/2.

       pkix_is_issuer(Cert, IssuerCert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{} | #'CertificateList'{}
                 IssuerCert = der_encoded() | #'OTPCertificate'{}

              Checks if IssuerCert issued Cert.

       pkix_is_fixed_dh_cert(Cert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}

              Checks if a certificate is a fixed Diffie-Hellman certificate.

       pkix_is_self_signed(Cert) -> boolean()

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}

              Checks if a certificate is self-signed.

       pkix_issuer_id(Cert, IssuedBy) -> {ok, IssuerID} | {error, Reason}

              Types:

                 Cert = der_encoded() | #'OTPCertificate'{}
                 IssuedBy = self | other
                 IssuerID = {integer(), issuer_name()}
                   The issuer id consists of the serial number and the issuers name.
                 Reason = term()

              Returns the issuer id.

       pkix_normalize_name(Issuer) -> Normalized

              Types:

                 Issuer = issuer_name()
                 Normalized = issuer_name()

              Normalizes an issuer name so that it can be easily compared to another issuer name.

       pkix_path_validation(TrustedCert, CertChain, Options) -> {ok, {PublicKeyInfo, PolicyTree}}
       | {error, {bad_cert, Reason}}

              Types:

                 TrustedCert = #'OTPCertificate'{} | der_encoded() | atom()
                   Normally a trusted certificate, but it can also  be  a  path-validation  error
                   that  can be discovered while constructing the input to this function and that
                   is  to  be  run  through  the  verify_fun.   Examples   are   unknown_ca   and
                   selfsigned_peer.
                 CertChain = [der_encoded()]
                   A  list  of  DER-encoded  certificates  in  trust  order  ending with the peer
                   certificate.
                 Options = proplists:proplist()
                 PublicKeyInfo = {?'rsaEncryption' |  ?'id-dsa',  rsa_public_key()  |  integer(),
                 'NULL' | 'Dss-Parms'{}}
                 PolicyTree = term()
                   At  the  moment  this  is  always  an empty list as policies are not currently
                   supported.
                 Reason = cert_expired | invalid_issuer | invalid_signature |  name_not_permitted
                 |  missing_basic_constraint  |  invalid_key_usage  |  {revoked,  crl_reason()} |
                 atom()

              Performs a basic path validation according to RFC 5280. However, CRL validation  is
              done  separately  by  pkix_crls_validate/3    and is to be called from the supplied
              verify_fun.

              Available options:

                {verify_fun, fun()}:
                  The fun must be defined as:

                fun(OtpCert :: #'OTPCertificate'{},
                    Event :: {bad_cert, Reason :: atom() | {revoked, atom()}} |
                             {extension, #'Extension'{}},
                    InitialUserState :: term()) ->
                     {valid, UserState :: term()} |
                     {valid_peer, UserState :: term()} |
                     {fail, Reason :: term()} |
                     {unknown, UserState :: term()}.

                  If the verify callback fun returns {fail, Reason}, the verification process  is
                  immediately stopped. If the verify callback fun returns {valid, UserState}, the
                  verification process is continued. This can be used  to  accept  specific  path
                  validation  errors,  such as selfsigned_peer, as well as verifying application-
                  specific  extensions.  If  called  with  an  extension  unknown  to  the   user
                  application, the return value {unknown, UserState} is to be used.

                {max_path_length, integer()}:
                   The  max_path_length  is  the  maximum  number of non-self-issued intermediate
                  certificates that can follow the peer  certificate  in  a  valid  certification
                  path. So, if max_path_length is 0, the PEER must be signed by the trusted ROOT-
                  CA directly, if it is 1, the path can be PEER, CA, ROOT-CA, if  it  is  2,  the
                  path can be PEER, CA, CA, ROOT-CA, and so on.

              Possible reasons for a bad certificate:

                cert_expired:
                  Certificate is no longer valid as its expiration date has passed.

                invalid_issuer:
                  Certificate  issuer  name  does not match the name of the issuer certificate in
                  the chain.

                invalid_signature:
                  Certificate was not signed by its issuer certificate in the chain.

                name_not_permitted:
                  Invalid Subject Alternative Name extension.

                missing_basic_constraint:
                  Certificate, required to have the basic constraints extension, does not have  a
                  basic constraints extension.

                invalid_key_usage:
                  Certificate key is used in an invalid way according to the key-usage extension.

                {revoked, crl_reason()}:
                  Certificate has been revoked.

                atom():
                  Application-specific error reason that is to be checked by the verify_fun.

       pkix_crl_issuer(CRL) -> issuer_name()

              Types:

                 CRL = der_encoded() | #'CertificateList'{}

              Returns the issuer of the CRL.

       pkix_crls_validate(OTPCertificate, DPAndCRLs, Options) -> CRLStatus()

              Types:

                 OTPCertificate = #'OTPCertificate'{}
                 DPAndCRLs      =      [{DP::#'DistributionPoint'{},      {DerCRL::der_encoded(),
                 CRL::#'CertificateList'{}}}]
                 Options = proplists:proplist()
                 CRLStatus() = valid | {bad_cert,  revocation_status_undetermined}  |  {bad_cert,
                 {revoked, crl_reason()}}

              Performs  CRL  validation.  It  is  intended  to  be  called from the verify fun of
              pkix_path_validation/3 .

              Available options:

                {update_crl, fun()}:
                  The fun has the following type specification:

                 fun(#'DistributionPoint'{}, #'CertificateList'{}) ->
                        #'CertificateList'{}

                  The fun uses the information in the distribution point  to  access  the  latest
                  possible  version of the CRL. If this fun is not specified, Public Key uses the
                  default implementation:

                 fun(_DP, CRL) -> CRL end

                {issuer_fun, fun()}:
                  The fun has the following type specification:

                fun(#'DistributionPoint'{}, #'CertificateList'{},
                    {rdnSequence,[#'AttributeTypeAndValue'{}]}, term()) ->
                     {ok, #'OTPCertificate'{}, [der_encoded]}

                  The fun returns the root certificate and certificate chain that has signed  the
                  CRL.

                 fun(DP, CRL, Issuer, UserState) -> {ok, RootCert, CertChain}

       pkix_crl_verify(CRL, Cert) -> boolean()

              Types:

                 CRL = der_encoded() | #'CertificateList'{}
                 Cert = der_encoded() | #'OTPCertificate'{}

              Verify that Cert is the CRL signer.

       pkix_dist_point(Cert) -> DistPoint

              Types:

                  Cert = der_encoded() | #'OTPCertificate'{}
                  DistPoint = #'DistributionPoint'{}

              Creates  a  distribution  point  for CRLs issued by the same issuer as Cert. Can be
              used as input to pkix_crls_validate/3

       pkix_dist_points(Cert) -> DistPoints

              Types:

                  Cert = der_encoded() | #'OTPCertificate'{}
                  DistPoints = [#'DistributionPoint'{}]

              Extracts distribution points from the certificates extensions.

       pkix_sign(#'OTPTBSCertificate'{}, Key) -> der_encoded()

              Types:

                 Key = rsa_private_key() | dsa_private_key()

              Signs an 'OTPTBSCertificate'. Returns the corresponding DER-encoded certificate.

       pkix_sign_types(AlgorithmId) -> {DigestType, SignatureType}

              Types:

                 AlgorithmId = oid()
                   Signature OID from a certificate or a certificate revocation list.
                 DigestType = rsa_digest_type() | dss_digest_type()
                 SignatureType = rsa | dsa | ecdsa

              Translates signature algorithm OID to Erlang digest and signature types.

       pkix_verify(Cert, Key) -> boolean()

              Types:

                 Cert = der_encoded()
                 Key = rsa_public_key() | dsa_public_key() | ec_public_key()

              Verifies PKIX x.509 certificate signature.

       sign(Msg, DigestType, Key) -> binary()

              Types:

                 Msg = binary() | {digest,binary()}
                   The Msg is either the binary "plain text" data to  be  signed  or  it  is  the
                   hashed value of "plain text", that is, the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Key = rsa_private_key() | dsa_private_key() | ec_private_key()

              Creates a digital signature.

       ssh_decode(SshBin, Type) -> [{public_key(), Attributes::list()}]

              Types:

                 SshBin = binary()
                   Example {ok, SshBin} = file:read_file("known_hosts").
                 Type = public_key | ssh_file()
                   If  Type  is  public_key  the binary can be either an RFC4716 public key or an
                   OpenSSH public key.

              Decodes an SSH file-binary. In the case of known_hosts or auth_keys, the binary can
              include  one  or  more  lines  of the file. Returns a list of public keys and their
              attributes, possible attribute values depends on the file type represented  by  the
              binary.

                RFC4716 attributes - see RFC 4716.:
                  {headers, [{string(), utf8_string()}]}

                auth_key attributes - see manual page for sshd.:
                  {comment,  string()}{options,  [string()]}{bits,  integer()} - In SSH version 1
                  files.

                known_host attributes - see manual page for sshd.:
                  {hostnames, [string()]}{comment, string()}{bits, integer()} - In SSH version  1
                  files.

       ssh_encode([{Key, Attributes}], Type) -> binary()

              Types:

                 Key = public_key()
                 Attributes = list()
                 Type = ssh_file()

              Encodes  a  list  of  SSH  file  entries  (public keys and attributes) to a binary.
              Possible attributes depend on the file type, see  ssh_decode/2 .

       verify(Msg, DigestType, Signature, Key) -> boolean()

              Types:

                 Msg = binary() | {digest,binary()}
                   The Msg is either the binary "plain text" data or it is the  hashed  value  of
                   "plain text", that is, the digest.
                 DigestType = rsa_digest_type() | dss_digest_type() | ecdsa_digest_type()
                 Signature = binary()
                 Key = rsa_public_key() | dsa_public_key() | ec_public_key()

              Verifies a digital signature.