Provided by: cufflinks_2.2.1+dfsg.1-2_amd64
NAME
gffread - component of cufflinks suite
DESCRIPTION
Usage: gffread <input_gff> [-g <genomic_seqs_fasta> | <dir>][-s <seq_info.fsize>] [-o <outfile.gff>] [-t <tname>] [-r [[<strand>]<chr>:]<start>..<end> [-R]] [-CTVNJMKQAFGUBHZWTOLE] [-w <exons.fa>] [-x <cds.fa>] [-y <tr_cds.fa>] [-i <maxintron>] Filters and/or converts GFF3/GTF2 records. <input_gff> is a GFF file, use '-' if the GFF records will be given at stdin
OPTIONS
-g full path to a multi-fasta file with the genomic sequences for all input mappings, OR a directory with single-fasta files (one per genomic sequence, with file names matching sequence names) -s <seq_info.fsize> is a tab-delimited file providing this info for each of the mapped sequences: <seq-name> <seq-length> <seq-description> (useful for -A option with mRNA/EST/protein mappings) -i discard transcripts having an intron larger than <maxintron> -r only show transcripts overlapping coordinate range <start>..<end> (on chromosome/contig <chr>, strand <strand> if provided) -R for -r option, discard all transcripts that are not fully contained within the given range -U discard single-exon transcripts -C coding only: discard mRNAs that have no CDS feature -F full GFF attribute preservation (all attributes are shown) -G only parse additional exon attributes from the first exon and move them to the mRNA level (useful for GTF input) -A use the description field from <seq_info.fsize> and add it as the value for a 'descr' attribute to the GFF record -O process also non-transcript GFF records (by default non-transcript records are ignored) -V discard any mRNAs with CDS having in-frame stop codons -H for -V option, check and adjust the starting CDS phase if the original phase leads to a translation with an in-frame stop codon -B for -V option, single-exon transcripts are also checked on the opposite strand -N discard multi-exon mRNAs that have any intron with a non-canonical splice site consensus (i.e. not GT-AG, GC-AG or AT-AC) -J discard any mRNAs that either lack initial START codon or the terminal STOP codon, or have an in-frame stop codon (only print mRNAs with a fulll, valid CDS) --no-pseudo: filter out records matching the 'pseudo' keyword -M/--merge : cluster the input transcripts into loci, collapsing matching transcripts (those with the same exact introns and fully contained) -d <dupinfo> : for -M option, write collapsing info to file <dupinfo> --cluster-only: same as --merge but without collapsing matching transcripts -K for -M option: also collapse shorter, fully contained transcripts with fewer introns than the container -Q for -M option, remove the containment restriction: (multi-exon transcripts will be collapsed if just their introns match, while single-exon transcripts can partially overlap (80%)) --force-exons: make sure that the lowest level GFF features are printed as "exon" features -E expose (warn about) duplicate transcript IDs and other potential problems with the given GFF/GTF records -D decode url encoded characters within attributes -Z merge close exons into a single exon (for intron size<4) -w write a fasta file with spliced exons for each GFF transcript -x write a fasta file with spliced CDS for each GFF transcript -W for -w and -x options, also write for each fasta record the exon coordinates projected onto the spliced sequence -y write a protein fasta file with the translation of CDS for each record -L Ensembl GTF to GFF3 conversion (implies -F; should be used with -m) -m <chr_replace> is a reference (genomic) sequence replacement table with this format: <original_ref_ID> <new_ref_ID> GFF records on reference sequences that are not found among the <original_ref_ID> entries in this file will be filtered out -o the "filtered" GFF records will be written to <outfile.gff> (use -o- for printing to stdout) -t use <trackname> in the second column of each GFF output line -T -o option will output GTF format instead of GFF3