Provided by: gmt-common_5.4.3+dfsg-1_all bug

NAME

       gmtmath - Reverse Polish Notation (RPN) calculator for data tables

SYNOPSIS

       gmtmath  [  -At_f(t).d[+e][+s|w] ] [  -Ccols ] [  -Eeigen ] [  -I ] [  -Nn_col[/t_col] ] [
       -Q ] [  -S[f|l] ] [  -Tt_min/t_max/t_inc[+n]|tfile  ]  [   -V[level]  ]  [  -bbinary  ]  [
       -dnodata  ]  [  -eregexp  ] [ -fflags ] [ -ggaps ] [ -hheaders ] [ -iflags ] [ -oflags ] [
       -sflags ] operand [ operand ] OPERATOR [ operand ] OPERATOR= [ outfile ]

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       gmtmath will perform operations like add, subtract, multiply, and divide on  one  or  more
       table  data  files  or  constants  using  Reverse  Polish  Notation  (RPN)  syntax  (e.g.,
       Hewlett-Packard calculator-style).  Arbitrarily complicated expressions may  therefore  be
       evaluated;  the  final  result  is  written  to  an output file [or standard output]. Data
       operations are element-by-element, not matrix manipulations  (except  where  noted).  Some
       operators  only  require  one  operand  (see  below).  If  no  data tables are used in the
       expression then options -T, -N can be set (and optionally -bo to indicate  the  data  type
       for  binary  tables). If STDIN is given, the standard input will be read and placed on the
       stack as if a file with that content had been given on the command line. By  default,  all
       columns  except  the  “time”  column  are  operated  on, but this can be changed (see -C).
       Complicated or frequently occurring expressions may be coded as a macro for future use  or
       stored and recalled via named memory locations.

REQUIRED ARGUMENTS

       operand
              If operand can be opened as a file it will be read as an ASCII (or binary, see -bi)
              table data file. If not a file, it is interpreted as  a  numerical  constant  or  a
              special  symbol  (see  below).  The special argument STDIN means that stdin will be
              read and placed on the stack; STDIN can appear more than once if necessary.

       outfile
              The name of a table data file that will hold the final result. If  not  given  then
              the output is sent to stdout.

OPTIONAL ARGUMENTS

       -At_f(t).d[+e][+r][+s|w]
              Requires  -N  and will partially initialize a table with values from the given file
              containing t and f(t) only. The t is placed in column t_col while  f(t)  goes  into
              column  n_col  -  1 (see -N).  Append +r to only place f(t) and leave the left hand
              side of the matrix equation alone.  If used with operators LSQFIT  and  SVDFIT  you
              can  optionally append the modifier +e which will instead evaluate the solution and
              write a data set with four columns: t, f(t), the model solution at t, and  the  the
              residuals  at  t, respectively [Default writes one column with model coefficients].
              Append +w if t_f(t).d has a third column with weights, or append +s if t_f(t).d has
              a  third  column  with  1-sigma.  In those two cases we find the weighted solution.
              The weights (or sigmas) will be output as the last column when +e is in effect.

       -Ccols Select the columns that will be operated on  until  next  occurrence  of  -C.  List
              columns  separated  by  commas;  ranges like 1,3-5,7 are allowed. -C (no arguments)
              resets the default action of using all columns except time  column  (see  -N).  -Ca
              selects  all  columns,  including  time  column,  while  -Cr reverses (toggles) the
              current choices.  When -C is in effect it also controls which columns from  a  file
              will be placed on the stack.

       -Eeigen
              Sets  the  minimum  eigenvalue used by operators LSQFIT and SVDFIT [1e-7].  Smaller
              eigenvalues are set to zero and will not be considered in the solution.

       -I     Reverses the output row sequence from ascending time to descending [ascending].

       -Nn_col[/t_col]
              Select the number of columns and optionally the column  number  that  contains  the
              “time”  variable  [0]. Columns are numbered starting at 0 [2/0]. If input files are
              specified then -N will add any missing columns.

       -Q     Quick mode for scalar calculation. Shorthand for -Ca -N1/0  -T0/0/1.  In this mode,
              constants  may  have  plot units (i.e., c, i, p) and if so the final answer will be
              reported in the unit set by PROJ_LENGTH_UNIT.

       -S[f|l]
              Only report the first or last row of the results [Default is  all  rows].  This  is
              useful  if  you  have computed a statistic (say the MODE) and only want to report a
              single number instead of numerous records with identical values. Append  l  to  get
              the last row and f to get the first row only [Default].

       -Tt_min/t_max/t_inc[+n]|tfile
              Required  when  no  input  files are given. Sets the t-coordinates of the first and
              last point and the equidistant sampling interval for the “time”  column  (see  -N).
              Append  +n if you are specifying the number of equidistant points instead. If there
              is no time column (only data columns), give -T with no arguments; this also implies
              -Ca. Alternatively, give the name of a file whose first column contains the desired
              t-coordinates which may be irregular.

       -V[level] (more …)
              Select verbosity level [c].

       -bi[ncols][t] (more …)
              Select native binary input.

       -bo[ncols][type] (more …)
              Select native binary output. [Default is same as input, but see -o]

       -d[i|o]nodata (more …)
              Replace input columns that equal nodata with NaN and do the reverse on output.

       -e[~]”pattern” | -e[~]/regexp/[i] (more …)
              Only accept data records that match the given pattern.

       -f[i|o]colinfo (more …)
              Specify data types of input and/or output columns.

       -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more …)
              Determine data gaps and line breaks.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more …)
              Skip or produce header record(s).

       -icols[+l][+sscale][+ooffset][,] (more …)
              Select input columns and transformations (0 is first column).

       -ocols[,…] (more …)
              Select output columns (0 is first column).

       -s[cols][a|r] (more …)
              Set handling of NaN records.

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows
              just use -).

       -+ or just +
              Print  an  extensive  usage  (help)  message,  including  the  explanation  of  any
              module-specific option (but not the GMT common options), then exits.

       -? or no arguments
              Print a complete usage (help) message, including the explanation  of  all  options,
              then exits.

OPERATORS

       Choose  among  the  following  185  operators.  “args”  are the number of input and output
       arguments.

                             ┌──────────┬──────┬──────────────────────────┐
                             │Operator  │ args │ Returns                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ABS       │ 1 1  │ abs (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOS      │ 1 1  │ acos (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOSH     │ 1 1  │ acosh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACSC      │ 1 1  │ acsc (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOT      │ 1 1  │ acot (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ADD       │ 2 1  │ A + B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │AND       │ 2 1  │ B if A == NaN, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASEC      │ 1 1  │ asec (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASIN      │ 1 1  │ asin (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASINH     │ 1 1  │ asinh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN      │ 1 1  │ atan (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN2     │ 2 1  │ atan2 (A, B)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATANH     │ 1 1  │ atanh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BCDF      │ 3 1  │ Binomial      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for p = A, n = B, and  x │
                             │          │      │ = C                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BPDF      │ 3 1  │ Binomial     probability │
                             │          │      │ density function for p = │
                             │          │      │ A, n = B, and x = C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BEI       │ 1 1  │ bei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BER       │ 1 1  │ ber (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITAND    │ 2 1  │ A   &   B  (bitwise  AND │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITLEFT   │ 2 1  │ A    <<    B    (bitwise │
                             │          │      │ left-shift operator)     │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITNOT    │ 1 1  │ ~A      (bitwise     NOT │
                             │          │      │ operator,  i.e.,  return │
                             │          │      │ two’s complement)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITOR     │ 2 1  │ A   |   B   (bitwise  OR │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITRIGHT  │ 2 1  │ A    >>    B    (bitwise │
                             │          │      │ right-shift operator)    │
                             └──────────┴──────┴──────────────────────────┘

                             │BITTEST   │ 2 1  │ 1  if bit B of A is set, │
                             │          │      │ else  0  (bitwise   TEST │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITXOR    │ 2 1  │ A   ^   B  (bitwise  XOR │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │CEIL      │ 1 1  │ ceil    (A)    (smallest │
                             │          │      │ integer >= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICRIT   │ 2 1  │ Chi-squared distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and nu = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICDF    │ 2 1  │ Chi-squared   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for chi2 = A and nu = B  │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHIPDF    │ 2 1  │ Chi-squared  probability │
                             │          │      │ density   function   for │
                             │          │      │ chi2 = A and nu = B      │
                             ├──────────┼──────┼──────────────────────────┤
                             │COL       │ 1 1  │ Places  column  A on the │
                             │          │      │ stack                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │COMB      │ 2 1  │ Combinations n_C_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │CORRCOEFF │ 2 1  │ Correlation  coefficient │
                             │          │      │ r(A, B)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │COS       │ 1 1  │ cos (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSD      │ 1 1  │ cos (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSH      │ 1 1  │ cosh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │COT       │ 1 1  │ cot (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COTD      │ 1 1  │ cot (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSC       │ 1 1  │ csc (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSCD      │ 1 1  │ csc (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │DDT       │ 1 1  │ d(A)/dt   Central    1st │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2DT2     │ 1 1  │ d^2(A)/dt^2          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2R       │ 1 1  │ Converts   Degrees    to │
                             │          │      │ Radians                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │DENAN     │ 2 1  │ Replace  NaNs  in A with │
                             │          │      │ values from B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │DILOG     │ 1 1  │ dilog (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │DIFF      │ 1 1  │ Forward       difference │
                             │          │      │ between         adjacent │
                             │          │      │ elements      of       A │
                             │          │      │ (A[1]-A[0],   A[2]-A[1], │
                             │          │      │ …, NaN)                  │
                             └──────────┴──────┴──────────────────────────┘

                             │DIV       │ 2 1  │ A / B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │DUP       │ 1 2  │ Places duplicate of A on │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECDF      │ 2 1  │ Exponential   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECRIT     │ 2 1  │ Exponential distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and lambda = B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │EPDF      │ 2 1  │ Exponential  probability │
                             │          │      │ density function for x = │
                             │          │      │ A and lambda = B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERF       │ 1 1  │ Error function erf (A)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFC      │ 1 1  │ Complementary      Error │
                             │          │      │ function erfc (A)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFINV    │ 1 1  │ Inverse  error  function │
                             │          │      │ of A                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │EQ        │ 2 1  │ 1 if A == B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXCH      │ 2 2  │ Exchanges A and B on the │
                             │          │      │ stack                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXP       │ 1 1  │ exp (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FACT      │ 1 1  │ A! (A factorial)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │FCDF      │ 3 1  │ F             cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for F = A, nu1 = B,  and │
                             │          │      │ nu2 = C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FCRIT     │ 3 1  │ F  distribution critical │
                             │          │      │ value for alpha = A, nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLIPUD    │ 1 1  │ Reverse  order  of  each │
                             │          │      │ column                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLOOR     │ 1 1  │ floor   (A)    (greatest │
                             │          │      │ integer <= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │FMOD      │ 2 1  │ A  %  B (remainder after │
                             │          │      │ truncated division)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │FPDF      │ 3 1  │ F  probability   density │
                             │          │      │ function  for F = A, nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │GE        │ 2 1  │ 1 if A >= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │GT        │ 2 1  │ 1 if A > B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │HYPOT     │ 2 1  │ hypot (A, B) = sqrt (A*A │
                             │          │      │ + B*B)                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │I0        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 0) │
                             └──────────┴──────┴──────────────────────────┘

                             │I1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │IFELSE    │ 3 1  │ B if A != 0, else C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │IN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │INRANGE   │ 3 1  │ 1 if B <= A <= C, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │INT       │ 1 1  │ Numerically integrate A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │INV       │ 1 1  │ 1 / A                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISFINITE  │ 1 1  │ 1 if A is finite, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISNAN     │ 1 1  │ 1 if A == NaN, else 0    │
                             ├──────────┼──────┼──────────────────────────┤
                             │J0        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │J1        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (1st kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │JN        │ 2 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order B)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │K0        │ 1 1  │ Modified Kelvin function │
                             │          │      │ of A (2nd kind, order 0) │
                             ├──────────┼──────┼──────────────────────────┤
                             │K1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KEI       │ 1 1  │ kei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KER       │ 1 1  │ ker (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KURT      │ 1 1  │ Kurtosis of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCDF      │ 1 1  │ Laplace       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCRIT     │ 1 1  │ Laplace     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LE        │ 2 1  │ 1 if A <= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LMSSCL    │ 1 1  │ LMS scale estimate  (LMS │
                             │          │      │ STD) of A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LMSSCLW   │ 2 1  │ Weighted    LMS    scale │
                             │          │      │ estimate (LMS STD) of  A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG       │ 1 1  │ log (A) (natural log)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG10     │ 1 1  │ log10 (A) (base 10)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG1P     │ 1 1  │ log  (1+A) (accurate for │
                             │          │      │ small A)                 │
                             └──────────┴──────┴──────────────────────────┘

                             │LOG2      │ 1 1  │ log2 (A) (base 2)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOWER     │ 1 1  │ The   lowest   (minimum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │LPDF      │ 1 1  │ Laplace      probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LRAND     │ 2 1  │ Laplace   random   noise │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             ├──────────┼──────┼──────────────────────────┤
                             │LSQFIT    │ 1 0  │ Let  current table be [A │
                             │          │      │ |   b]   return    least │
                             │          │      │ squares solution x = A \ │
                             │          │      │ b                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LT        │ 2 1  │ 1 if A < B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAD       │ 1 1  │ Median          Absolute │
                             │          │      │ Deviation (L1 STD) of A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │MADW      │ 2 1  │ Weighted Median Absolute │
                             │          │      │ Deviation (L1 STD) of  A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAX       │ 2 1  │ Maximum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEAN      │ 1 1  │ Mean value of A          │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEANW     │ 2 1  │ Weighted mean value of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEDIAN    │ 1 1  │ Median value of A        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEDIANW   │ 2 1  │ Weighted median value of │
                             │          │      │ A for weights in B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MIN       │ 2 1  │ Minimum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MOD       │ 2 1  │ A mod B (remainder after │
                             │          │      │ floored division)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MODE      │ 1 1  │ Mode value (Least Median │
                             │          │      │ of Squares) of A         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MODEW     │ 2 1  │ Weighted    mode   value │
                             │          │      │ (Least     Median     of │
                             │          │      │ Squares)    of   A   for │
                             │          │      │ weights in B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │MUL       │ 2 1  │ A * B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NAN       │ 2 1  │ NaN if A == B, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEG       │ 1 1  │ -A                       │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEQ       │ 2 1  │ 1 if A != B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │NORM      │ 1 1  │ Normalize     (A)     so │
                             │          │      │ max(A)-min(A) = 1        │
                             ├──────────┼──────┼──────────────────────────┤
                             │NOT       │ 1 1  │ NaN  if A == NaN, 1 if A │
                             │          │      │ == 0, else 0             │
                             └──────────┴──────┴──────────────────────────┘

                             │NRAND     │ 2 1  │ Normal,  random   values │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             ├──────────┼──────┼──────────────────────────┤
                             │OR        │ 2 1  │ NaN if B == NaN, else A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PCDF      │ 2 1  │ Poisson       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │PERM      │ 2 1  │ Permutations n_P_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │PPDF      │ 2 1  │ Poisson     distribution │
                             │          │      │ P(x,lambda), with x =  A │
                             │          │      │ and lambda = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLM       │ 3 1  │ Associated      Legendre │
                             │          │      │ polynomial P(A) degree B │
                             │          │      │ order C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLMg      │ 3 1  │ Normalized    associated │
                             │          │      │ Legendre polynomial P(A) │
                             │          │      │ degree    B    order   C │
                             │          │      │ (geophysical convention) │
                             ├──────────┼──────┼──────────────────────────┤
                             │POP       │ 1 0  │ Delete top element  from │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │POW       │ 2 1  │ A ^ B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PQUANT    │ 2 1  │ The     B’th    quantile │
                             │          │      │ (0-100%) of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │PQUANTW   │ 3 1  │ The    C’th     weighted │
                             │          │      │ quantile  (0-100%)  of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │PSI       │ 1 1  │ Psi (or Digamma) of A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PV        │ 3 1  │ Legendre function  Pv(A) │
                             │          │      │ of  degree v = real(B) + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │QV        │ 3 1  │ Legendre function  Qv(A) │
                             │          │      │ of  degree v = real(B) + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2        │ 2 1  │ R2 = A^2 + B^2           │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2D       │ 1 1  │ Convert    radians    to │
                             │          │      │ degrees                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │RAND      │ 2 1  │ Uniform   random  values │
                             │          │      │ between A and B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCDF      │ 1 1  │ Rayleigh      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCRIT     │ 1 1  │ Rayleigh    distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             └──────────┴──────┴──────────────────────────┘

                             │RINT      │ 1 1  │ rint   (A)   (round   to │
                             │          │      │ integral  value  nearest │
                             │          │      │ to A)                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │RMS       │ 1 1  │ Root-mean-square of A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │RMSW      │ 1 1  │ Weighted                 │
                             │          │      │ root-mean-square   of  A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │RPDF      │ 1 1  │ Rayleigh     probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROLL      │ 2 0  │ Cyclicly shifts the  top │
                             │          │      │ A   stack  items  by  an │
                             │          │      │ amount B                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROTT      │ 2 1  │ Rotate    A    by    the │
                             │          │      │ (constant)  shift  B  in │
                             │          │      │ the t-direction          │
                             ├──────────┼──────┼──────────────────────────┤
                             │SEC       │ 1 1  │ sec (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SECD      │ 1 1  │ sec (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIGN      │ 1 1  │ sign (+1 or -1) of A     │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIN       │ 1 1  │ sin (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINC      │ 1 1  │ sinc      (A)       (sin │
                             │          │      │ (pi*A)/(pi*A))           │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIND      │ 1 1  │ sin (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINH      │ 1 1  │ sinh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │SKEW      │ 1 1  │ Skewness of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQR       │ 1 1  │ A^2                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQRT      │ 1 1  │ sqrt (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │STD       │ 1 1  │ Standard deviation of A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │STDW      │ 2 1  │ Weighted        standard │
                             │          │      │ deviation   of   A   for │
                             │          │      │ weights in B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEP      │ 1 1  │ Heaviside  step function │
                             │          │      │ H(A)                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEPT     │ 1 1  │ Heaviside step  function │
                             │          │      │ H(t-A)                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUB       │ 2 1  │ A - B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUM       │ 1 1  │ Cumulative sum of A      │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAN       │ 1 1  │ tan (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAND      │ 1 1  │ tan (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TANH      │ 1 1  │ tanh (A)                 │
                             └──────────┴──────┴──────────────────────────┘

                             │TAPER     │ 1 1  │ Unit             weights │
                             │          │      │ cosine-tapered  to  zero │
                             │          │      │ within A of end margins  │
                             ├──────────┼──────┼──────────────────────────┤
                             │TN        │ 2 1  │ Chebyshev     polynomial │
                             │          │      │ Tn(-1<A<+1) of degree B  │
                             ├──────────┼──────┼──────────────────────────┤
                             │TCRIT     │ 2 1  │ Student’s t distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and nu = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │TPDF      │ 2 1  │ Student’s t  probability │
                             │          │      │ density function for t = │
                             │          │      │ A, and nu = B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │TCDF      │ 2 1  │ Student’s  t  cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for t = A, and nu = B    │
                             ├──────────┼──────┼──────────────────────────┤
                             │UPPER     │ 1 1  │ The  highest   (maximum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │VAR       │ 1 1  │ Variance of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │VARW      │ 2 1  │ Weighted  variance  of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │WCDF      │ 3 1  │ Weibull       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A,  scale  =  B, │
                             │          │      │ and shape = C            │
                             ├──────────┼──────┼──────────────────────────┤
                             │WCRIT     │ 3 1  │ Weibull     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │WPDF      │ 3 1  │ Weibull          density │
                             │          │      │ distribution             │
                             │          │      │ P(x,scale,shape), with x │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │XOR       │ 2 1  │ B if A == NaN, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y0        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (2nd kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y1        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (2nd kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │YN        │ 2 1  │ Bessel  function  of   A │
                             │          │      │ (2nd kind, order B)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCDF      │ 1 1  │ Normal        cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZPDF      │ 1 1  │ Normal       probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCRIT     │ 1 1  │ Normal      distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             └──────────┴──────┴──────────────────────────┘

                             │ROOTS     │ 2 1  │ Treats col A as f(t) = 0 │
                             │          │      │ and returns its roots    │
                             └──────────┴──────┴──────────────────────────┘

SYMBOLS

       The following symbols have special meaning:

                              ┌───────┬──────────────────────────────────┐
                              │PI     │ 3.1415926…                       │
                              ├───────┼──────────────────────────────────┤
                              │E      │ 2.7182818…                       │
                              ├───────┼──────────────────────────────────┤
                              │EULER  │ 0.5772156…                       │
                              ├───────┼──────────────────────────────────┤
                              │EPS_F  │ 1.192092896e-07 (sgl. prec. eps) │
                              ├───────┼──────────────────────────────────┤
                              │EPS_D  │ 2.2204460492503131e-16     (dbl. │
                              │       │ prec. eps)                       │
                              ├───────┼──────────────────────────────────┤
                              │TMIN   │ Minimum t value                  │
                              ├───────┼──────────────────────────────────┤
                              │TMAX   │ Maximum t value                  │
                              ├───────┼──────────────────────────────────┤
                              │TRANGE │ Range of t values                │
                              ├───────┼──────────────────────────────────┤
                              │TINC   │ t increment                      │
                              ├───────┼──────────────────────────────────┤
                              │N      │ The number of records            │
                              ├───────┼──────────────────────────────────┤
                              │T      │ Table with t-coordinates         │
                              ├───────┼──────────────────────────────────┤
                              │TNORM  │ Table       with      normalized │
                              │       │ t-coordinates                    │
                              ├───────┼──────────────────────────────────┤
                              │TROW   │ Table with row numbers 1, 2,  …, │
                              │       │ N-1                              │
                              └───────┴──────────────────────────────────┘

ASCII FORMAT PRECISION

       The  ASCII  output formats of numerical data are controlled by parameters in your gmt.conf
       file. Longitude and latitude are formatted according to FORMAT_GEO_OUT, absolute  time  is
       under  the control of FORMAT_DATE_OUT and FORMAT_CLOCK_OUT, whereas general floating point
       values are formatted according to FORMAT_FLOAT_OUT. Be aware that the format in effect can
       lead  to loss of precision in ASCII output, which can lead to various problems downstream.
       If you find the output is not written with enough precision, consider switching to  binary
       output (-bo if available) or specify more decimals using the FORMAT_FLOAT_OUT setting.

NOTES ON OPERATORS

       1. The operators PLM and PLMg calculate the associated Legendre polynomial of degree L and
       order M in x which must satisfy -1 <= x <= +1 and 0 <= M <= L. x, L, and M are  the  three
       arguments  preceding  the operator. PLM is not normalized and includes the Condon-Shortley
       phase (-1)^M. PLMg is normalized in the way that is most commonly used in geophysics.  The
       C-S  phase  can  be  added  by using -M as argument.  PLM will overflow at higher degrees,
       whereas PLMg is stable until ultra high degrees (at least 3000).

       2. Files that have the same names as some operators, e.g., ADD, SIGN, =,  etc.  should  be
       identified by prepending the current directory (i.e., ./).

       3. The stack depth limit is hard-wired to 100.

       4.  All  functions  expecting  a  positive  radius  (e.g.,  LOG, KEI, etc.) are passed the
       absolute value of their argument.

       5. The DDT and D2DT2 functions only work on regularly spaced data.

       6. All derivatives  are  based  on  central  finite  differences,  with  natural  boundary
       conditions.

       7. ROOTS must be the last operator on the stack, only followed by =.

STORE, RECALL AND CLEAR

       You  may store intermediate calculations to a named variable that you may recall and place
       on the stack at a later time. This is useful if you need access  to  a  computed  quantity
       many  times  in  your  expression  as  it  will shorten the overall expression and improve
       readability. To save a result you use the special operator STO@label, where label  is  the
       name  you choose to give the quantity. To recall the stored result to the stack at a later
       time, use [RCL]@label, i.e., RCL is optional. To clear memory you may use CLR@label.  Note
       that STO and CLR leave the stack unchanged.

       8.  The  bitwise operators (BITAND, BITLEFT, BITNOT, BITOR, BITRIGHT, BITTEST, and BITXOR)
       convert a tables’s double precision values to unsigned 64-bit ints to perform the  bitwise
       operations.  Consequently,  the largest whole integer value that can be stored in a double
       precision value is 2^53 or 9,007,199,254,740,992. Any higher result will be masked to  fit
       in  the  lower  54  bits.   Thus,  bit operations are effectively limited to 54 bits.  All
       bitwise operators return NaN if given NaN arguments or bit-settings <= 0.

       9. TAPER will interpret its argument to be a width in the same units as the time-axis, but
       if  no  time  is provided (i.e., plain data tables) then the width is taken to be given in
       number of rows.

MACROS

       Users may save their favorite operator combinations as macros via the file  gmtmath.macros
       in  their  current  or  user directory. The file may contain any number of macros (one per
       record); comment lines starting with # are skipped. The format for the macros  is  name  =
       arg1 arg2  arg2 [ : comment] where name is how the macro will be used. When this operator
       appears on the command line we simply replace it with the listed argument list.  No  macro
       may  call  another  macro. As an example, the following macro expects that the time-column
       contains seafloor ages in Myr and computes the predicted half-space bathymetry:

       DEPTH = SQRT 350 MUL 2500 ADD NEG : usage: DEPTH to return half-space seafloor depths

       Note: Because geographic or time constants may be present in a macro, it is required  that
       the  optional comment flag (:) must be followed by a space.  As another example, we show a
       macro GPSWEEK which determines which GPS week a timestamp belongs to:

       GPSWEEK = 1980-01-06T00:00:00 SUB 86400 DIV 7 DIV FLOOR : GPS week without rollover

ACTIVE COLUMN SELECTION

       When -Ccols is set then any operation, including loading of data from files, will restrict
       which  columns are affected.  To avoid unexpected results, note that if you issue a -Ccols
       option before you load in the data then only those columns  will  be  updated,  hence  the
       unspecified  columns will be zero.  On the other hand, if you load the file first and then
       issue -Ccols then the unspecified columns will have been loaded but are then ignored until
       you undo the effect of -C.

EXAMPLES

       To add two plot dimensions of different units, we can run

              length=`gmt math -Q 15c 2i SUB =`

       To  take  the  square  root  of  the content of the second data column being piped through
       gmtmath by process1 and pipe it through a 3rd process, use

              process1 | gmt math STDIN SQRT = | process3

       To take log10 of the average of 2 data files, use

              gmt math file1.d file2.d ADD 0.5 MUL LOG10 = file3.d

       Given the file samples.d, which holds seafloor ages in m.y. and seafloor depth in  m,  use
       the relation depth(in m) = 2500 + 350 * sqrt (age) to print the depth anomalies:

              gmt math samples.d T SQRT 350 MUL 2500 ADD SUB = | lpr

       To  take  the  average  of  columns 1 and 4-6 in the three data sets sizes.1, sizes.2, and
       sizes.3, use

              gmt math -C1,4-6 sizes.1 sizes.2 ADD sizes.3 ADD 3 DIV = ave.d

       To take the 1-column data set ages.d and calculate the modal value  and  assign  it  to  a
       variable, try

              gmt set mode_age = `gmt math -S -T ages.d MODE =`

       To evaluate the dilog(x) function for coordinates given in the file t.d:

              gmt math -Tt.d T DILOG = dilog.d

       To  demonstrate  the  use  of  stored  variables,  consider this sum of the first 3 cosine
       harmonics where we store and repeatedly recall the trigonometric argument (2*pi*T/360):

              gmt math -T0/360/1 2 PI MUL 360 DIV T MUL STO@kT COS @kT 2 MUL COS ADD \
                          @kT 3 MUL COS ADD = harmonics.d

       To use gmtmath as a RPN Hewlett-Packard calculator on scalars (i.e., no input  files)  and
       calculate  arbitrary expressions, use the -Q option.  As an example, we will calculate the
       value of Kei (((1 + 1.75)/2.2) + cos (60)) and store the result in the shell variable z:

              set z = `gmt math -Q 1 1.75 ADD 2.2 DIV 60 COSD ADD KEI =`

       To use gmtmath as a general least squares equation solver, imagine that the current  table
       is  the augmented matrix [ A | b ] and you want the least squares solution x to the matrix
       equation A * x = b. The operator LSQFIT does this; it is your job to populate  the  matrix
       correctly first. The -A option will facilitate this. Suppose you have a 2-column file ty.d
       with t and b(t) and you would like to fit a the model y(t) = a + b*t + c*H(t-t0), where  H
       is  the Heaviside step function for a given t0 = 1.55. Then, you need a 4-column augmented
       table loaded with t in column 1 and your  observed  y(t)  in  column  3.  The  calculation
       becomes

              gmt math -N4/1 -Aty.d -C0 1 ADD -C2 1.55 STEPT ADD -Ca LSQFIT = solution.d

       Note  we use the -C option to select which columns we are working on, then make active all
       the columns we need (here all of them, with -Ca) before calling  LSQFIT.  The  second  and
       fourth  columns  (col  numbers  1  and 3) are preloaded with t and y(t), respectively, the
       other columns are zero. If you already have a  pre-calculated  table  with  the  augmented
       matrix [ A | b ] in a file (say lsqsys.d), the least squares solution is simply

              gmt math -T lsqsys.d LSQFIT = solution.d

       Users  must  be  aware  that  when  -C controls which columns are to be active the control
       extends to placing columns from files as well.  Contrast the different result obtained  by
       these very similar commands:

          echo 1 2 3 4 | gmt math STDIN -C3 1 ADD =
          1    2    3    5

       versus

          echo 1 2 3 4 | gmt math -C3 STDIN 1 ADD =
          0    0    0    5

REFERENCES

       Abramowitz,  M.,  and  I.  A.  Stegun,  1964,  Handbook of Mathematical Functions, Applied
       Mathematics Series, vol. 55, Dover, New York.

       Holmes, S. A., and W. E. Featherstone, 2002, A unified approach to the Clenshaw  summation
       and the recursive computation of very high degree and order normalized associated Legendre
       functions. Journal of Geodesy, 76, 279-299.

       Press, W. H., S. A. Teukolsky, W. T. Vetterling,  and  B.  P.  Flannery,  1992,  Numerical
       Recipes, 2nd edition, Cambridge Univ., New York.

       Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.

SEE ALSO

       gmt, grdmath

COPYRIGHT

       2018, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe