Provided by: gmt-common_5.4.3+dfsg-1_all
NAME
grdmath - Reverse Polish Notation (RPN) calculator for grids (element by element)
SYNOPSIS
grdmath [ -Amin_area[/min_level/max_level][+ag|i|s |S][+r|l][ppercent] ] [ -Dresolution[+] ] [ -Iincrement ] [ -M ] [ -N ] [ -Rregion ] [ -V[level] ] [ -bibinary ] [ -dinodata ] [ -fflags ] [ -hheaders ] [ -iflags ] [ -nflags ] [ -r ] [ -x[[-]n] ] operand [ operand ] OPERATOR [ operand ] OPERATOR … = outgrdfile Note: No space is allowed between the option flag and the associated arguments.
DESCRIPTION
grdmath will perform operations like add, subtract, multiply, and divide on one or more grid files or constants using Reverse Polish Notation (RPN) syntax (e.g., Hewlett-Packard calculator-style). Arbitrarily complicated expressions may therefore be evaluated; the final result is written to an output grid file. Grid operations are element-by-element, not matrix manipulations. Some operators only require one operand (see below). If no grid files are used in the expression then options -R, -I must be set (and optionally -r). The expression = outgrdfile can occur as many times as the depth of the stack allows in order to save intermediate results. Complicated or frequently occurring expressions may be coded as a macro for future use or stored and recalled via named memory locations.
REQUIRED ARGUMENTS
operand If operand can be opened as a file it will be read as a grid file. If not a file, it is interpreted as a numerical constant or a special symbol (see below). outgrdfile The name of a 2-D grid file that will hold the final result. (See GRID FILE FORMATS below).
OPTIONAL ARGUMENTS
-Amin_area[/min_level/max_level][+ag|i|s|S][+r|l][+ppercent] Features with an area smaller than min_area in km^2 or of hierarchical level that is lower than min_level or higher than max_level will not be plotted [Default is 0/0/4 (all features)]. Level 2 (lakes) contains regular lakes and wide river bodies which we normally include as lakes; append +r to just get river-lakes or +l to just get regular lakes. By default (+ai) we select the ice shelf boundary as the coastline for Antarctica; append +ag to instead select the ice grounding line as coastline. For expert users who wish to print their own Antarctica coastline and islands via psxy you can use +as to skip all GSHHG features below 60S or +aS to instead skip all features north of 60S. Finally, append +ppercent to exclude polygons whose percentage area of the corresponding full-resolution feature is less than percent. See GSHHG INFORMATION below for more details. (-A is only relevant to the LDISTG operator) -Dresolution[+] Selects the resolution of the data set to use with the operator LDISTG ((f)ull, (h)igh, (i)ntermediate, (l)ow, and (c)rude). The resolution drops off by 80% between data sets [Default is l]. Append + to automatically select a lower resolution should the one requested not be available [abort if not found]. -Ixinc[unit][+e|n][/yinc[unit][+e|n]] x_inc [and optionally y_inc] is the grid spacing. Optionally, append a suffix modifier. Geographical (degrees) coordinates: Append m to indicate arc minutes or s to indicate arc seconds. If one of the units e, f, k, M, n or u is appended instead, the increment is assumed to be given in meter, foot, km, Mile, nautical mile or US survey foot, respectively, and will be converted to the equivalent degrees longitude at the middle latitude of the region (the conversion depends on PROJ_ELLIPSOID). If y_inc is given but set to 0 it will be reset equal to x_inc; otherwise it will be converted to degrees latitude. All coordinates: If +e is appended then the corresponding max x (east) or y (north) may be slightly adjusted to fit exactly the given increment [by default the increment may be adjusted slightly to fit the given domain]. Finally, instead of giving an increment you may specify the number of nodes desired by appending +n to the supplied integer argument; the increment is then recalculated from the number of nodes and the domain. The resulting increment value depends on whether you have selected a gridline-registered or pixel-registered grid; see App-file-formats for details. Note: if -Rgrdfile is used then the grid spacing has already been initialized; use -I to override the values. -M By default any derivatives calculated are in z_units/ x(or y)_units. However, the user may choose this option to convert dx,dy in degrees of longitude,latitude into meters using a flat Earth approximation, so that gradients are in z_units/meter. -N Turn off strict domain match checking when multiple grids are manipulated [Default will insist that each grid domain is within 1e-4 * grid_spacing of the domain of the first grid listed]. -Rxmin/xmax/ymin/ymax[+r][+uunit] (more …) Specify the region of interest. -V[level] (more …) Select verbosity level [c]. -bi[ncols][t] (more …) Select native binary input. The binary input option only applies to the data files needed by operators LDIST, PDIST, and INSIDE. -dinodata (more …) Replace input columns that equal nodata with NaN. -f[i|o]colinfo (more …) Specify data types of input and/or output columns. -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more …) Determine data gaps and line breaks. -h[i|o][n][+c][+d][+rremark][+rtitle] (more …) Skip or produce header record(s). -icols[+l][+sscale][+ooffset][,…] (more …) Select input columns and transformations (0 is first column). -n[b|c|l|n][+a][+bBC][+c][+tthreshold] (more …) Select interpolation mode for grids. -r (more …) Set pixel node registration [gridline]. Only used with -R -I. -x[[-]n] (more …) Limit number of cores used in multi-threaded algorithms (OpenMP required). -^ or just - Print a short message about the syntax of the command, then exits (NOTE: on Windows just use -). -+ or just + Print an extensive usage (help) message, including the explanation of any module-specific option (but not the GMT common options), then exits. -? or no arguments Print a complete usage (help) message, including the explanation of all options, then exits.
OPERATORS
Choose among the following 209 operators. “args” are the number of input and output arguments. ┌──────────┬──────┬──────────────────────────┐ │Operator │ args │ Returns │ ├──────────┼──────┼──────────────────────────┤ │ABS │ 1 1 │ abs (A) │ ├──────────┼──────┼──────────────────────────┤ │ACOS │ 1 1 │ acos (A) │ ├──────────┼──────┼──────────────────────────┤ │ACOSH │ 1 1 │ acosh (A) │ ├──────────┼──────┼──────────────────────────┤ │ACOT │ 1 1 │ acot (A) │ ├──────────┼──────┼──────────────────────────┤ │ACSC │ 1 1 │ acsc (A) │ ├──────────┼──────┼──────────────────────────┤ │ADD │ 2 1 │ A + B │ ├──────────┼──────┼──────────────────────────┤ │AND │ 2 1 │ B if A == NaN, else A │ ├──────────┼──────┼──────────────────────────┤ │ARC │ 2 1 │ Return arc(A,B) on [0 │ │ │ │ pi] │ ├──────────┼──────┼──────────────────────────┤ │AREA │ 0 1 │ Area of each gridnode │ │ │ │ cell (in km^2 if │ │ │ │ geographic) │ ├──────────┼──────┼──────────────────────────┤ │ASEC │ 1 1 │ asec (A) │ ├──────────┼──────┼──────────────────────────┤ │ASIN │ 1 1 │ asin (A) │ ├──────────┼──────┼──────────────────────────┤ │ASINH │ 1 1 │ asinh (A) │ ├──────────┼──────┼──────────────────────────┤ │ATAN │ 1 1 │ atan (A) │ ├──────────┼──────┼──────────────────────────┤ │ATAN2 │ 2 1 │ atan2 (A, B) │ ├──────────┼──────┼──────────────────────────┤ │ATANH │ 1 1 │ atanh (A) │ ├──────────┼──────┼──────────────────────────┤ │BCDF │ 3 1 │ Binomial cumulative │ │ │ │ distribution function │ │ │ │ for p = A, n = B, and x │ │ │ │ = C │ ├──────────┼──────┼──────────────────────────┤ │BPDF │ 3 1 │ Binomial probability │ │ │ │ density function for p = │ │ │ │ A, n = B, and x = C │ ├──────────┼──────┼──────────────────────────┤ │BEI │ 1 1 │ bei (A) │ ├──────────┼──────┼──────────────────────────┤ │BER │ 1 1 │ ber (A) │ ├──────────┼──────┼──────────────────────────┤ │BITAND │ 2 1 │ A & B (bitwise AND │ │ │ │ operator) │ ├──────────┼──────┼──────────────────────────┤ │BITLEFT │ 2 1 │ A << B (bitwise │ │ │ │ left-shift operator) │ ├──────────┼──────┼──────────────────────────┤ │BITNOT │ 1 1 │ ~A (bitwise NOT │ │ │ │ operator, i.e., return │ │ │ │ two’s complement) │ ├──────────┼──────┼──────────────────────────┤ │BITOR │ 2 1 │ A | B (bitwise OR │ │ │ │ operator) │ └──────────┴──────┴──────────────────────────┘ │BITRIGHT │ 2 1 │ A >> B (bitwise │ │ │ │ right-shift operator) │ ├──────────┼──────┼──────────────────────────┤ │BITTEST │ 2 1 │ 1 if bit B of A is set, │ │ │ │ else 0 (bitwise TEST │ │ │ │ operator) │ ├──────────┼──────┼──────────────────────────┤ │BITXOR │ 2 1 │ A ^ B (bitwise XOR │ │ │ │ operator) │ ├──────────┼──────┼──────────────────────────┤ │CAZ │ 2 1 │ Cartesian azimuth from │ │ │ │ grid nodes to stack x,y │ │ │ │ (i.e., A, B) │ ├──────────┼──────┼──────────────────────────┤ │CBAZ │ 2 1 │ Cartesian back-azimuth │ │ │ │ from grid nodes to stack │ │ │ │ x,y (i.e., A, B) │ ├──────────┼──────┼──────────────────────────┤ │CDIST │ 2 1 │ Cartesian distance │ │ │ │ between grid nodes and │ │ │ │ stack x,y (i.e., A, B) │ ├──────────┼──────┼──────────────────────────┤ │CDIST2 │ 2 1 │ As CDIST but only to │ │ │ │ nodes that are != 0 │ ├──────────┼──────┼──────────────────────────┤ │CEIL │ 1 1 │ ceil (A) (smallest │ │ │ │ integer >= A) │ ├──────────┼──────┼──────────────────────────┤ │CHICRIT │ 2 1 │ Chi-squared critical │ │ │ │ value for alpha = A and │ │ │ │ nu = B │ ├──────────┼──────┼──────────────────────────┤ │CHICDF │ 2 1 │ Chi-squared cumulative │ │ │ │ distribution function │ │ │ │ for chi2 = A and nu = B │ ├──────────┼──────┼──────────────────────────┤ │CHIPDF │ 2 1 │ Chi-squared probability │ │ │ │ density function for │ │ │ │ chi2 = A and nu = B │ ├──────────┼──────┼──────────────────────────┤ │COMB │ 2 1 │ Combinations n_C_r, with │ │ │ │ n = A and r = B │ ├──────────┼──────┼──────────────────────────┤ │CORRCOEFF │ 2 1 │ Correlation coefficient │ │ │ │ r(A, B) │ ├──────────┼──────┼──────────────────────────┤ │COS │ 1 1 │ cos (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │COSD │ 1 1 │ cos (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │COSH │ 1 1 │ cosh (A) │ ├──────────┼──────┼──────────────────────────┤ │COT │ 1 1 │ cot (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │COTD │ 1 1 │ cot (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │CSC │ 1 1 │ csc (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │CSCD │ 1 1 │ csc (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │CURV │ 1 1 │ Curvature of A │ │ │ │ (Laplacian) │ └──────────┴──────┴──────────────────────────┘ │D2DX2 │ 1 1 │ d^2(A)/dx^2 2nd │ │ │ │ derivative │ ├──────────┼──────┼──────────────────────────┤ │D2DY2 │ 1 1 │ d^2(A)/dy^2 2nd │ │ │ │ derivative │ ├──────────┼──────┼──────────────────────────┤ │D2DXY │ 1 1 │ d^2(A)/dxdy 2nd │ │ │ │ derivative │ ├──────────┼──────┼──────────────────────────┤ │D2R │ 1 1 │ Converts Degrees to │ │ │ │ Radians │ ├──────────┼──────┼──────────────────────────┤ │DDX │ 1 1 │ d(A)/dx Central 1st │ │ │ │ derivative │ ├──────────┼──────┼──────────────────────────┤ │DDY │ 1 1 │ d(A)/dy Central 1st │ │ │ │ derivative │ ├──────────┼──────┼──────────────────────────┤ │DEG2KM │ 1 1 │ Converts Spherical │ │ │ │ Degrees to Kilometers │ ├──────────┼──────┼──────────────────────────┤ │DENAN │ 2 1 │ Replace NaNs in A with │ │ │ │ values from B │ ├──────────┼──────┼──────────────────────────┤ │DILOG │ 1 1 │ dilog (A) │ ├──────────┼──────┼──────────────────────────┤ │DIV │ 2 1 │ A / B │ ├──────────┼──────┼──────────────────────────┤ │DUP │ 1 2 │ Places duplicate of A on │ │ │ │ the stack │ ├──────────┼──────┼──────────────────────────┤ │ECDF │ 2 1 │ Exponential cumulative │ │ │ │ distribution function │ │ │ │ for x = A and lambda = B │ ├──────────┼──────┼──────────────────────────┤ │ECRIT │ 2 1 │ Exponential distribution │ │ │ │ critical value for alpha │ │ │ │ = A and lambda = B │ ├──────────┼──────┼──────────────────────────┤ │EPDF │ 2 1 │ Exponential probability │ │ │ │ density function for x = │ │ │ │ A and lambda = B │ ├──────────┼──────┼──────────────────────────┤ │ERF │ 1 1 │ Error function erf (A) │ ├──────────┼──────┼──────────────────────────┤ │ERFC │ 1 1 │ Complementary Error │ │ │ │ function erfc (A) │ ├──────────┼──────┼──────────────────────────┤ │EQ │ 2 1 │ 1 if A == B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │ERFINV │ 1 1 │ Inverse error function │ │ │ │ of A │ ├──────────┼──────┼──────────────────────────┤ │EXCH │ 2 2 │ Exchanges A and B on the │ │ │ │ stack │ ├──────────┼──────┼──────────────────────────┤ │EXP │ 1 1 │ exp (A) │ ├──────────┼──────┼──────────────────────────┤ │FACT │ 1 1 │ A! (A factorial) │ ├──────────┼──────┼──────────────────────────┤ │EXTREMA │ 1 1 │ Local Extrema: +2/-2 is │ │ │ │ max/min, +1/-1 is saddle │ │ │ │ with max/min in x, 0 │ │ │ │ elsewhere │ └──────────┴──────┴──────────────────────────┘ │FCDF │ 3 1 │ F cumulative │ │ │ │ distribution function │ │ │ │ for F = A, nu1 = B, and │ │ │ │ nu2 = C │ ├──────────┼──────┼──────────────────────────┤ │FCRIT │ 3 1 │ F distribution critical │ │ │ │ value for alpha = A, nu1 │ │ │ │ = B, and nu2 = C │ ├──────────┼──────┼──────────────────────────┤ │FLIPLR │ 1 1 │ Reverse order of values │ │ │ │ in each row │ ├──────────┼──────┼──────────────────────────┤ │FLIPUD │ 1 1 │ Reverse order of values │ │ │ │ in each column │ ├──────────┼──────┼──────────────────────────┤ │FLOOR │ 1 1 │ floor (A) (greatest │ │ │ │ integer <= A) │ ├──────────┼──────┼──────────────────────────┤ │FMOD │ 2 1 │ A % B (remainder after │ │ │ │ truncated division) │ ├──────────┼──────┼──────────────────────────┤ │FPDF │ 3 1 │ F probability density │ │ │ │ function for F = A, nu1 │ │ │ │ = B, and nu2 = C │ ├──────────┼──────┼──────────────────────────┤ │GE │ 2 1 │ 1 if A >= B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │GT │ 2 1 │ 1 if A > B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │HYPOT │ 2 1 │ hypot (A, B) = sqrt (A*A │ │ │ │ + B*B) │ ├──────────┼──────┼──────────────────────────┤ │I0 │ 1 1 │ Modified Bessel function │ │ │ │ of A (1st kind, order 0) │ ├──────────┼──────┼──────────────────────────┤ │I1 │ 1 1 │ Modified Bessel function │ │ │ │ of A (1st kind, order 1) │ ├──────────┼──────┼──────────────────────────┤ │IFELSE │ 3 1 │ B if A != 0, else C │ ├──────────┼──────┼──────────────────────────┤ │IN │ 2 1 │ Modified Bessel function │ │ │ │ of A (1st kind, order B) │ ├──────────┼──────┼──────────────────────────┤ │INRANGE │ 3 1 │ 1 if B <= A <= C, else 0 │ ├──────────┼──────┼──────────────────────────┤ │INSIDE │ 1 1 │ 1 when inside or on │ │ │ │ polygon(s) in A, else 0 │ ├──────────┼──────┼──────────────────────────┤ │INV │ 1 1 │ 1 / A │ ├──────────┼──────┼──────────────────────────┤ │ISFINITE │ 1 1 │ 1 if A is finite, else 0 │ ├──────────┼──────┼──────────────────────────┤ │ISNAN │ 1 1 │ 1 if A == NaN, else 0 │ ├──────────┼──────┼──────────────────────────┤ │J0 │ 1 1 │ Bessel function of A │ │ │ │ (1st kind, order 0) │ ├──────────┼──────┼──────────────────────────┤ │J1 │ 1 1 │ Bessel function of A │ │ │ │ (1st kind, order 1) │ ├──────────┼──────┼──────────────────────────┤ │JN │ 2 1 │ Bessel function of A │ │ │ │ (1st kind, order B) │ └──────────┴──────┴──────────────────────────┘ │K0 │ 1 1 │ Modified Kelvin function │ │ │ │ of A (2nd kind, order 0) │ ├──────────┼──────┼──────────────────────────┤ │K1 │ 1 1 │ Modified Bessel function │ │ │ │ of A (2nd kind, order 1) │ ├──────────┼──────┼──────────────────────────┤ │KEI │ 1 1 │ kei (A) │ ├──────────┼──────┼──────────────────────────┤ │KER │ 1 1 │ ker (A) │ ├──────────┼──────┼──────────────────────────┤ │KM2DEG │ 1 1 │ Converts Kilometers to │ │ │ │ Spherical Degrees │ ├──────────┼──────┼──────────────────────────┤ │KN │ 2 1 │ Modified Bessel function │ │ │ │ of A (2nd kind, order B) │ ├──────────┼──────┼──────────────────────────┤ │KURT │ 1 1 │ Kurtosis of A │ ├──────────┼──────┼──────────────────────────┤ │LCDF │ 1 1 │ Laplace cumulative │ │ │ │ distribution function │ │ │ │ for z = A │ ├──────────┼──────┼──────────────────────────┤ │LCRIT │ 1 1 │ Laplace distribution │ │ │ │ critical value for alpha │ │ │ │ = A │ ├──────────┼──────┼──────────────────────────┤ │LDIST │ 1 1 │ Compute minimum distance │ │ │ │ (in km if -fg) from │ │ │ │ lines in multi-segment │ │ │ │ ASCII file A │ ├──────────┼──────┼──────────────────────────┤ │LDIST2 │ 2 1 │ As LDIST, from lines in │ │ │ │ ASCII file B but only to │ │ │ │ nodes where A != 0 │ ├──────────┼──────┼──────────────────────────┤ │LDISTG │ 0 1 │ As LDIST, but operates │ │ │ │ on the GSHHG dataset │ │ │ │ (see -A, -D for │ │ │ │ options). │ ├──────────┼──────┼──────────────────────────┤ │LE │ 2 1 │ 1 if A <= B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │LOG │ 1 1 │ log (A) (natural log) │ ├──────────┼──────┼──────────────────────────┤ │LOG10 │ 1 1 │ log10 (A) (base 10) │ ├──────────┼──────┼──────────────────────────┤ │LOG1P │ 1 1 │ log (1+A) (accurate for │ │ │ │ small A) │ ├──────────┼──────┼──────────────────────────┤ │LOG2 │ 1 1 │ log2 (A) (base 2) │ ├──────────┼──────┼──────────────────────────┤ │LMSSCL │ 1 1 │ LMS scale estimate (LMS │ │ │ │ STD) of A │ ├──────────┼──────┼──────────────────────────┤ │LMSSCLW │ 2 1 │ Weighted LMS scale │ │ │ │ estimate (LMS STD) of A │ │ │ │ for weights in B │ ├──────────┼──────┼──────────────────────────┤ │LOWER │ 1 1 │ The lowest (minimum) │ │ │ │ value of A │ ├──────────┼──────┼──────────────────────────┤ │LPDF │ 1 1 │ Laplace probability │ │ │ │ density function for z = │ │ │ │ A │ └──────────┴──────┴──────────────────────────┘ │LRAND │ 2 1 │ Laplace random noise │ │ │ │ with mean A and std. │ │ │ │ deviation B │ ├──────────┼──────┼──────────────────────────┤ │LT │ 2 1 │ 1 if A < B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │MAD │ 1 1 │ Median Absolute │ │ │ │ Deviation (L1 STD) of A │ ├──────────┼──────┼──────────────────────────┤ │MAX │ 2 1 │ Maximum of A and B │ ├──────────┼──────┼──────────────────────────┤ │MEAN │ 1 1 │ Mean value of A │ ├──────────┼──────┼──────────────────────────┤ │MEANW │ 2 1 │ Weighted mean value of A │ │ │ │ for weights in B │ ├──────────┼──────┼──────────────────────────┤ │MEDIAN │ 1 1 │ Median value of A │ ├──────────┼──────┼──────────────────────────┤ │MEDIANW │ 2 1 │ Weighted median value of │ │ │ │ A for weights in B │ ├──────────┼──────┼──────────────────────────┤ │MIN │ 2 1 │ Minimum of A and B │ ├──────────┼──────┼──────────────────────────┤ │MOD │ 2 1 │ A mod B (remainder after │ │ │ │ floored division) │ ├──────────┼──────┼──────────────────────────┤ │MODE │ 1 1 │ Mode value (Least Median │ │ │ │ of Squares) of A │ ├──────────┼──────┼──────────────────────────┤ │MODEW │ 2 1 │ Weighted mode value │ │ │ │ (Least Median of │ │ │ │ Squares) of A for │ │ │ │ weights in B │ ├──────────┼──────┼──────────────────────────┤ │MUL │ 2 1 │ A * B │ ├──────────┼──────┼──────────────────────────┤ │NAN │ 2 1 │ NaN if A == B, else A │ ├──────────┼──────┼──────────────────────────┤ │NEG │ 1 1 │ -A │ ├──────────┼──────┼──────────────────────────┤ │NEQ │ 2 1 │ 1 if A != B, else 0 │ ├──────────┼──────┼──────────────────────────┤ │NORM │ 1 1 │ Normalize (A) so │ │ │ │ max(A)-min(A) = 1 │ ├──────────┼──────┼──────────────────────────┤ │NOT │ 1 1 │ NaN if A == NaN, 1 if A │ │ │ │ == 0, else 0 │ ├──────────┼──────┼──────────────────────────┤ │NRAND │ 2 1 │ Normal, random values │ │ │ │ with mean A and std. │ │ │ │ deviation B │ ├──────────┼──────┼──────────────────────────┤ │OR │ 2 1 │ NaN if B == NaN, else A │ ├──────────┼──────┼──────────────────────────┤ │PCDF │ 2 1 │ Poisson cumulative │ │ │ │ distribution function │ │ │ │ for x = A and lambda = B │ ├──────────┼──────┼──────────────────────────┤ │PDIST │ 1 1 │ Compute minimum distance │ │ │ │ (in km if -fg) from │ │ │ │ points in ASCII file A │ └──────────┴──────┴──────────────────────────┘ │PDIST2 │ 2 1 │ As PDIST, from points in │ │ │ │ ASCII file B but only to │ │ │ │ nodes where A != 0 │ ├──────────┼──────┼──────────────────────────┤ │PERM │ 2 1 │ Permutations n_P_r, with │ │ │ │ n = A and r = B │ ├──────────┼──────┼──────────────────────────┤ │PLM │ 3 1 │ Associated Legendre │ │ │ │ polynomial P(A) degree B │ │ │ │ order C │ ├──────────┼──────┼──────────────────────────┤ │PLMg │ 3 1 │ Normalized associated │ │ │ │ Legendre polynomial P(A) │ │ │ │ degree B order C │ │ │ │ (geophysical convention) │ ├──────────┼──────┼──────────────────────────┤ │POINT │ 1 2 │ Compute mean x and y │ │ │ │ from ASCII file A and │ │ │ │ place them on the stack │ ├──────────┼──────┼──────────────────────────┤ │POP │ 1 0 │ Delete top element from │ │ │ │ the stack │ ├──────────┼──────┼──────────────────────────┤ │POW │ 2 1 │ A ^ B │ ├──────────┼──────┼──────────────────────────┤ │PPDF │ 2 1 │ Poisson distribution │ │ │ │ P(x,lambda), with x = A │ │ │ │ and lambda = B │ ├──────────┼──────┼──────────────────────────┤ │PQUANT │ 2 1 │ The B’th Quantile │ │ │ │ (0-100%) of A │ ├──────────┼──────┼──────────────────────────┤ │PQUANTW │ 3 1 │ The C’th weighted │ │ │ │ quantile (0-100%) of A │ │ │ │ for weights in B │ ├──────────┼──────┼──────────────────────────┤ │PSI │ 1 1 │ Psi (or Digamma) of A │ ├──────────┼──────┼──────────────────────────┤ │PV │ 3 1 │ Legendre function Pv(A) │ │ │ │ of degree v = real(B) + │ │ │ │ imag(C) │ ├──────────┼──────┼──────────────────────────┤ │QV │ 3 1 │ Legendre function Qv(A) │ │ │ │ of degree v = real(B) + │ │ │ │ imag(C) │ ├──────────┼──────┼──────────────────────────┤ │R2 │ 2 1 │ R2 = A^2 + B^2 │ ├──────────┼──────┼──────────────────────────┤ │R2D │ 1 1 │ Convert Radians to │ │ │ │ Degrees │ ├──────────┼──────┼──────────────────────────┤ │RAND │ 2 1 │ Uniform random values │ │ │ │ between A and B │ ├──────────┼──────┼──────────────────────────┤ │RCDF │ 1 1 │ Rayleigh cumulative │ │ │ │ distribution function │ │ │ │ for z = A │ ├──────────┼──────┼──────────────────────────┤ │RCRIT │ 1 1 │ Rayleigh distribution │ │ │ │ critical value for alpha │ │ │ │ = A │ └──────────┴──────┴──────────────────────────┘ │RINT │ 1 1 │ rint (A) (round to │ │ │ │ integral value nearest │ │ │ │ to A) │ ├──────────┼──────┼──────────────────────────┤ │RMS │ 1 1 │ Root-mean-square of A │ ├──────────┼──────┼──────────────────────────┤ │RMSW │ 1 1 │ Root-mean-square of A │ │ │ │ for weights in B │ ├──────────┼──────┼──────────────────────────┤ │RPDF │ 1 1 │ Rayleigh probability │ │ │ │ density function for z = │ │ │ │ A │ ├──────────┼──────┼──────────────────────────┤ │ROLL │ 2 0 │ Cyclicly shifts the top │ │ │ │ A stack items by an │ │ │ │ amount B │ ├──────────┼──────┼──────────────────────────┤ │ROTX │ 2 1 │ Rotate A by the │ │ │ │ (constant) shift B in │ │ │ │ x-direction │ ├──────────┼──────┼──────────────────────────┤ │ROTY │ 2 1 │ Rotate A by the │ │ │ │ (constant) shift B in │ │ │ │ y-direction │ ├──────────┼──────┼──────────────────────────┤ │SDIST │ 2 1 │ Spherical (Great │ │ │ │ circle|geodesic) │ │ │ │ distance (in km) between │ │ │ │ nodes and stack (A, B) │ ├──────────┼──────┼──────────────────────────┤ │SDIST2 │ 2 1 │ As SDIST but only to │ │ │ │ nodes that are != 0 │ ├──────────┼──────┼──────────────────────────┤ │SAZ │ 2 1 │ Spherical azimuth from │ │ │ │ grid nodes to stack lon, │ │ │ │ lat (i.e., A, B) │ ├──────────┼──────┼──────────────────────────┤ │SBAZ │ 2 1 │ Spherical back-azimuth │ │ │ │ from grid nodes to stack │ │ │ │ lon, lat (i.e., A, B) │ ├──────────┼──────┼──────────────────────────┤ │SEC │ 1 1 │ sec (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │SECD │ 1 1 │ sec (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │SIGN │ 1 1 │ sign (+1 or -1) of A │ ├──────────┼──────┼──────────────────────────┤ │SIN │ 1 1 │ sin (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │SINC │ 1 1 │ sinc (A) (sin │ │ │ │ (pi*A)/(pi*A)) │ ├──────────┼──────┼──────────────────────────┤ │SIND │ 1 1 │ sin (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │SINH │ 1 1 │ sinh (A) │ ├──────────┼──────┼──────────────────────────┤ │SKEW │ 1 1 │ Skewness of A │ ├──────────┼──────┼──────────────────────────┤ │SQR │ 1 1 │ A^2 │ ├──────────┼──────┼──────────────────────────┤ │SQRT │ 1 1 │ sqrt (A) │ ├──────────┼──────┼──────────────────────────┤ │STD │ 1 1 │ Standard deviation of A │ └──────────┴──────┴──────────────────────────┘ │STDW │ 2 1 │ Weighted standard │ │ │ │ deviation of A for │ │ │ │ weights in B │ ├──────────┼──────┼──────────────────────────┤ │STEP │ 1 1 │ Heaviside step function: │ │ │ │ H(A) │ ├──────────┼──────┼──────────────────────────┤ │STEPX │ 1 1 │ Heaviside step function │ │ │ │ in x: H(x-A) │ ├──────────┼──────┼──────────────────────────┤ │STEPY │ 1 1 │ Heaviside step function │ │ │ │ in y: H(y-A) │ ├──────────┼──────┼──────────────────────────┤ │SUB │ 2 1 │ A - B │ ├──────────┼──────┼──────────────────────────┤ │SUM │ 1 1 │ Sum of all values in A │ ├──────────┼──────┼──────────────────────────┤ │TAN │ 1 1 │ tan (A) (A in radians) │ ├──────────┼──────┼──────────────────────────┤ │TAND │ 1 1 │ tan (A) (A in degrees) │ ├──────────┼──────┼──────────────────────────┤ │TANH │ 1 1 │ tanh (A) │ ├──────────┼──────┼──────────────────────────┤ │TAPER │ 2 1 │ Unit weights │ │ │ │ cosine-tapered to zero │ │ │ │ within A and B of x and │ │ │ │ y grid margins │ ├──────────┼──────┼──────────────────────────┤ │TCDF │ 2 1 │ Student’s t cumulative │ │ │ │ distribution function │ │ │ │ for t = A, and nu = B │ ├──────────┼──────┼──────────────────────────┤ │TCRIT │ 2 1 │ Student’s t distribution │ │ │ │ critical value for alpha │ │ │ │ = A and nu = B │ ├──────────┼──────┼──────────────────────────┤ │TN │ 2 1 │ Chebyshev polynomial │ │ │ │ Tn(-1<t<+1,n), with t = │ │ │ │ A, and n = B │ ├──────────┼──────┼──────────────────────────┤ │TPDF │ 2 1 │ Student’s t probability │ │ │ │ density function for t = │ │ │ │ A, and nu = B │ ├──────────┼──────┼──────────────────────────┤ │TRIM │ 3 1 │ Alpha-trim C to NaN if │ │ │ │ values fall in tails A │ │ │ │ and B (in percentage) │ ├──────────┼──────┼──────────────────────────┤ │UPPER │ 1 1 │ The highest (maximum) │ │ │ │ value of A │ ├──────────┼──────┼──────────────────────────┤ │VAR │ 1 1 │ Variance of A │ ├──────────┼──────┼──────────────────────────┤ │VARW │ 2 1 │ Weighted variance of A │ │ │ │ for weights in B │ ├──────────┼──────┼──────────────────────────┤ │WCDF │ 3 1 │ Weibull cumulative │ │ │ │ distribution function │ │ │ │ for x = A, scale = B, │ │ │ │ and shape = C │ └──────────┴──────┴──────────────────────────┘ │WCRIT │ 3 1 │ Weibull distribution │ │ │ │ critical value for alpha │ │ │ │ = A, scale = B, and │ │ │ │ shape = C │ ├──────────┼──────┼──────────────────────────┤ │WPDF │ 3 1 │ Weibull density │ │ │ │ distribution │ │ │ │ P(x,scale,shape), with x │ │ │ │ = A, scale = B, and │ │ │ │ shape = C │ ├──────────┼──────┼──────────────────────────┤ │WRAP │ 1 1 │ wrap A in radians onto │ │ │ │ [-pi,pi] │ ├──────────┼──────┼──────────────────────────┤ │XOR │ 2 1 │ 0 if A == NaN and B == │ │ │ │ NaN, NaN if B == NaN, │ │ │ │ else A │ ├──────────┼──────┼──────────────────────────┤ │Y0 │ 1 1 │ Bessel function of A │ │ │ │ (2nd kind, order 0) │ ├──────────┼──────┼──────────────────────────┤ │Y1 │ 1 1 │ Bessel function of A │ │ │ │ (2nd kind, order 1) │ ├──────────┼──────┼──────────────────────────┤ │YLM │ 2 2 │ Re and Im │ │ │ │ orthonormalized │ │ │ │ spherical harmonics │ │ │ │ degree A order B │ ├──────────┼──────┼──────────────────────────┤ │YLMg │ 2 2 │ Cos and Sin normalized │ │ │ │ spherical harmonics │ │ │ │ degree A order B │ │ │ │ (geophysical convention) │ ├──────────┼──────┼──────────────────────────┤ │YN │ 2 1 │ Bessel function of A │ │ │ │ (2nd kind, order B) │ ├──────────┼──────┼──────────────────────────┤ │ZCDF │ 1 1 │ Normal cumulative │ │ │ │ distribution function │ │ │ │ for z = A │ ├──────────┼──────┼──────────────────────────┤ │ZPDF │ 1 1 │ Normal probability │ │ │ │ density function for z = │ │ │ │ A │ ├──────────┼──────┼──────────────────────────┤ │ZCRIT │ 1 1 │ Normal distribution │ │ │ │ critical value for alpha │ │ │ │ = A │ └──────────┴──────┴──────────────────────────┘
SYMBOLS
The following symbols have special meaning: ┌───────┬──────────────────────────────────┐ │PI │ 3.1415926… │ ├───────┼──────────────────────────────────┤ │E │ 2.7182818… │ ├───────┼──────────────────────────────────┤ │EULER │ 0.5772156… │ ├───────┼──────────────────────────────────┤ │EPS_F │ 1.192092896e-07 (single │ │ │ precision epsilon │ ├───────┼──────────────────────────────────┤ │XMIN │ Minimum x value │ └───────┴──────────────────────────────────┘ │XMAX │ Maximum x value │ ├───────┼──────────────────────────────────┤ │XRANGE │ Range of x values │ ├───────┼──────────────────────────────────┤ │XINC │ x increment │ ├───────┼──────────────────────────────────┤ │NX │ The number of x nodes │ ├───────┼──────────────────────────────────┤ │YMIN │ Minimum y value │ ├───────┼──────────────────────────────────┤ │YMAX │ Maximum y value │ ├───────┼──────────────────────────────────┤ │YRANGE │ Range of y values │ ├───────┼──────────────────────────────────┤ │YINC │ y increment │ ├───────┼──────────────────────────────────┤ │NY │ The number of y nodes │ ├───────┼──────────────────────────────────┤ │X │ Grid with x-coordinates │ ├───────┼──────────────────────────────────┤ │Y │ Grid with y-coordinates │ ├───────┼──────────────────────────────────┤ │XNORM │ Grid with normalized [-1 to +1] │ │ │ x-coordinates │ ├───────┼──────────────────────────────────┤ │YNORM │ Grid with normalized [-1 to +1] │ │ │ y-coordinates │ ├───────┼──────────────────────────────────┤ │XCOL │ Grid with column numbers 0, 1, │ │ │ …, NX-1 │ ├───────┼──────────────────────────────────┤ │YROW │ Grid with row numbers 0, 1, …, │ │ │ NY-1 │ ├───────┼──────────────────────────────────┤ │NODE │ Grid with node numbers 0, 1, …, │ │ │ (NX*NY)-1 │ └───────┴──────────────────────────────────┘
NOTES ON OPERATORS
1. For Cartesian grids the operators MEAN, MEDIAN, MODE, LMSSCL, MAD, PQUANT, RMS, STD, and VAR return the expected value from the given matrix. However, for geographic grids we perform a spherically weighted calculation where each node value is weighted by the geographic area represented by that node. 2. The operator SDIST calculates spherical distances in km between the (lon, lat) point on the stack and all node positions in the grid. The grid domain and the (lon, lat) point are expected to be in degrees. Similarly, the SAZ and SBAZ operators calculate spherical azimuth and back-azimuths in degrees, respectively. The operators LDIST and PDIST compute spherical distances in km if -fg is set or implied, else they return Cartesian distances. Note: If the current PROJ_ELLIPSOID is ellipsoidal then geodesics are used in calculations of distances, which can be slow. You can trade speed with accuracy by changing the algorithm used to compute the geodesic (see PROJ_GEODESIC). The operator LDISTG is a version of LDIST that operates on the GSHHG data. Instead of reading an ASCII file, it directly accesses one of the GSHHG data sets as determined by the -D and -A options. 3. The operator POINT reads a ASCII table, computes the mean x and mean y values and places these on the stack. If geographic data then we use the mean 3-D vector to determine the mean location. 4. The operator PLM calculates the associated Legendre polynomial of degree L and order M (0 <= M <= L), and its argument is the sine of the latitude. PLM is not normalized and includes the Condon-Shortley phase (-1)^M. PLMg is normalized in the way that is most commonly used in geophysics. The C-S phase can be added by using -M as argument. PLM will overflow at higher degrees, whereas PLMg is stable until ultra high degrees (at least 3000). 5. The operators YLM and YLMg calculate normalized spherical harmonics for degree L and order M (0 <= M <= L) for all positions in the grid, which is assumed to be in degrees. YLM and YLMg return two grids, the real (cosine) and imaginary (sine) component of the complex spherical harmonic. Use the POP operator (and EXCH) to get rid of one of them, or save both by giving two consecutive = file.nc calls. The orthonormalized complex harmonics YLM are most commonly used in physics and seismology. The square of YLM integrates to 1 over a sphere. In geophysics, YLMg is normalized to produce unit power when averaging the cosine and sine terms (separately!) over a sphere (i.e., their squares each integrate to 4 pi). The Condon-Shortley phase (-1)^M is not included in YLM or YLMg, but it can be added by using -M as argument. 6. All the derivatives are based on central finite differences, with natural boundary conditions, and are Cartesian derivatives. 7. Files that have the same names as some operators, e.g., ADD, SIGN, =, etc. should be identified by prepending the current directory (i.e., ./LOG). 8. Piping of files is not allowed. 9. The stack depth limit is hard-wired to 100. 10. All functions expecting a positive radius (e.g., LOG, KEI, etc.) are passed the absolute value of their argument. (9) The bitwise operators (BITAND, BITLEFT, BITNOT, BITOR, BITRIGHT, BITTEST, and BITXOR) convert a grid’s single precision values to unsigned 32-bit ints to perform the bitwise operations. Consequently, the largest whole integer value that can be stored in a float grid is 2^24 or 16,777,216. Any higher result will be masked to fit in the lower 24 bits. Thus, bit operations are effectively limited to 24 bit. All bitwise operators return NaN if given NaN arguments or bit-settings <= 0. 11. When OpenMP support is compiled in, a few operators will take advantage of the ability to spread the load onto several cores. At present, the list of such operators is: LDIST, LDIST2, PDIST, PDIST2, SAZ, SBAZ, SDIST, YLM, and grd_YLMg.
GRID VALUES PRECISION
Regardless of the precision of the input data, GMT programs that create grid files will internally hold the grids in 4-byte floating point arrays. This is done to conserve memory and furthermore most if not all real data can be stored using 4-byte floating point values. Data with higher precision (i.e., double precision values) will lose that precision once GMT operates on the grid or writes out new grids. To limit loss of precision when processing data you should always consider normalizing the data prior to processing.
GRID FILE FORMATS
By default GMT writes out grid as single precision floats in a COARDS-complaint netCDF file format. However, GMT is able to produce grid files in many other commonly used grid file formats and also facilitates so called “packing” of grids, writing out floating point data as 1- or 2-byte integers. (more …)
GEOGRAPHICAL AND TIME COORDINATES
When the output grid type is netCDF, the coordinates will be labeled “longitude”, “latitude”, or “time” based on the attributes of the input data or grid (if any) or on the -f or -R options. For example, both -f0x -f1t and -R90w/90e/0t/3t will result in a longitude/time grid. When the x, y, or z coordinate is time, it will be stored in the grid as relative time since epoch as specified by TIME_UNIT and TIME_EPOCH in the gmt.conf file or on the command line. In addition, the unit attribute of the time variable will indicate both this unit and epoch.
STORE, RECALL AND CLEAR
You may store intermediate calculations to a named variable that you may recall and place on the stack at a later time. This is useful if you need access to a computed quantity many times in your expression as it will shorten the overall expression and improve readability. To save a result you use the special operator STO@label, where label is the name you choose to give the quantity. To recall the stored result to the stack at a later time, use [RCL]@label, i.e., RCL is optional. To clear memory you may use CLR@label. Note that STO and CLR leave the stack unchanged.
GSHHS INFORMATION
The coastline database is GSHHG (formerly GSHHS) which is compiled from three sources: World Vector Shorelines (WVS), CIA World Data Bank II (WDBII), and Atlas of the Cryosphere (AC, for Antarctica only). Apart from Antarctica, all level-1 polygons (ocean-land boundary) are derived from the more accurate WVS while all higher level polygons (level 2-4, representing land/lake, lake/island-in-lake, and island-in-lake/lake-in-island-in-lake boundaries) are taken from WDBII. The Antarctica coastlines come in two flavors: ice-front or grounding line, selectable via the -A option. Much processing has taken place to convert WVS, WDBII, and AC data into usable form for GMT: assembling closed polygons from line segments, checking for duplicates, and correcting for crossings between polygons. The area of each polygon has been determined so that the user may choose not to draw features smaller than a minimum area (see -A); one may also limit the highest hierarchical level of polygons to be included (4 is the maximum). The 4 lower-resolution databases were derived from the full resolution database using the Douglas-Peucker line-simplification algorithm. The classification of rivers and borders follow that of the WDBII. See the GMT Cookbook and Technical Reference Appendix K for further details.
MACROS
Users may save their favorite operator combinations as macros via the file grdmath.macros in their current or user directory. The file may contain any number of macros (one per record); comment lines starting with # are skipped. The format for the macros is name = arg1 arg2 … arg2 : comment where name is how the macro will be used. When this operator appears on the command line we simply replace it with the listed argument list. No macro may call another macro. As an example, the following macro expects three arguments (radius x0 y0) and sets the modes that are inside the given circle to 1 and those outside to 0: INCIRCLE = CDIST EXCH DIV 1 LE : usage: r x y INCIRCLE to return 1 inside circle Note: Because geographic or time constants may be present in a macro, it is required that the optional comment flag (:) must be followed by a space.
EXAMPLES
To compute all distances to north pole: gmt grdmath -Rg -I1 0 90 SDIST = dist_to_NP.nc To take log10 of the average of 2 files, use gmt grdmath file1.nc file2.nc ADD 0.5 MUL LOG10 = file3.nc Given the file ages.nc, which holds seafloor ages in m.y., use the relation depth(in m) = 2500 + 350 * sqrt (age) to estimate normal seafloor depths: gmt grdmath ages.nc SQRT 350 MUL 2500 ADD = depths.nc To find the angle a (in degrees) of the largest principal stress from the stress tensor given by the three files s_xx.nc s_yy.nc, and s_xy.nc from the relation tan (2*a) = 2 * s_xy / (s_xx - s_yy), use gmt grdmath 2 s_xy.nc MUL s_xx.nc s_yy.nc SUB DIV ATAN 2 DIV = direction.nc To calculate the fully normalized spherical harmonic of degree 8 and order 4 on a 1 by 1 degree world map, using the real amplitude 0.4 and the imaginary amplitude 1.1: gmt grdmath -R0/360/-90/90 -I1 8 4 YLM 1.1 MUL EXCH 0.4 MUL ADD = harm.nc To extract the locations of local maxima that exceed 100 mGal in the file faa.nc: gmt grdmath faa.nc DUP EXTREMA 2 EQ MUL DUP 100 GT MUL 0 NAN = z.nc gmt grd2xyz z.nc -s > max.xyz To demonstrate the use of named variables, consider this radial wave where we store and recall the normalized radial arguments in radians: gmt grdmath -R0/10/0/10 -I0.25 5 5 CDIST 2 MUL PI MUL 5 DIV STO@r COS @r SIN MUL = wave.nc To creat a dumb file saved as a 32 bits float GeoTiff using GDAL, run gmt grdmath -Rd -I10 X Y MUL = lixo.tiff=gd:GTiff
REFERENCES
Abramowitz, M., and I. A. Stegun, 1964, Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55, Dover, New York. Holmes, S. A., and W. E. Featherstone, 2002, A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. Journal of Geodesy, 76, 279-299. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992, Numerical Recipes, 2nd edition, Cambridge Univ., New York. Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.
SEE ALSO
gmt, gmtmath, grd2xyz, grdedit, grdinfo, xyz2grd
COPYRIGHT
2018, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe