Provided by: gmt-common_5.4.3+dfsg-1_all bug

NAME

       grdmath - Reverse Polish Notation (RPN) calculator for grids (element by element)

SYNOPSIS

       grdmath    [     -Amin_area[/min_level/max_level][+ag|i|s    |S][+r|l][ppercent]    ]    [
       -Dresolution[+] ] [  -Iincrement ] [  -M ] [   -N  ]  [   -Rregion  ]  [   -V[level]  ]  [
       -bibinary  ]  [  -dinodata  ]  [  -fflags ] [ -hheaders ] [ -iflags ] [ -nflags ] [ -r ] [
       -x[[-]n] ] operand [ operand ] OPERATOR [ operand ] OPERATOR= outgrdfile

       Note: No space is allowed between the option flag and the associated arguments.

DESCRIPTION

       grdmath will perform operations like add, subtract, multiply, and divide on  one  or  more
       grid  files or constants using Reverse Polish Notation (RPN) syntax (e.g., Hewlett-Packard
       calculator-style).  Arbitrarily complicated expressions may therefore  be  evaluated;  the
       final  result  is  written to an output grid file. Grid operations are element-by-element,
       not matrix manipulations. Some operators only require one operand (see below). If no  grid
       files  are used in the expression then options -R, -I must be set (and optionally -r). The
       expression = outgrdfile can occur as many times as the depth of the stack allows in  order
       to  save  intermediate  results.   Complicated  or frequently occurring expressions may be
       coded as a macro for future use or stored and recalled via named memory locations.

REQUIRED ARGUMENTS

       operand
              If operand can be opened as a file it will be read as a grid file.  If not a  file,
              it is interpreted as a numerical constant or a special symbol (see below).

       outgrdfile
              The name of a 2-D grid file that will hold the final result. (See GRID FILE FORMATS
              below).

OPTIONAL ARGUMENTS

       -Amin_area[/min_level/max_level][+ag|i|s|S][+r|l][+ppercent]
              Features with an area smaller than min_area in km^2 or of hierarchical  level  that
              is  lower  than  min_level or higher than max_level will not be plotted [Default is
              0/0/4 (all features)].  Level 2 (lakes)  contains  regular  lakes  and  wide  river
              bodies  which we normally include as lakes; append +r to just get river-lakes or +l
              to just get regular lakes.  By default (+ai) we select the ice  shelf  boundary  as
              the  coastline  for Antarctica; append +ag to instead select the ice grounding line
              as coastline.  For expert users who wish to print their  own  Antarctica  coastline
              and islands via psxy you can use +as to skip all GSHHG features below 60S or +aS to
              instead skip all features north of  60S.   Finally,  append  +ppercent  to  exclude
              polygons whose percentage area of the corresponding full-resolution feature is less
              than percent. See GSHHG INFORMATION below for more details. (-A is only relevant to
              the LDISTG operator)

       -Dresolution[+]
              Selects  the  resolution  of  the data set to use with the operator LDISTG ((f)ull,
              (h)igh, (i)ntermediate, (l)ow, and  (c)rude).  The  resolution  drops  off  by  80%
              between  data  sets  [Default  is  l].   Append  +  to automatically select a lower
              resolution should the one requested not be available [abort if not found].

       -Ixinc[unit][+e|n][/yinc[unit][+e|n]]
              x_inc [and optionally y_inc] is the  grid  spacing.  Optionally,  append  a  suffix
              modifier. Geographical (degrees) coordinates: Append m to indicate arc minutes or s
              to indicate arc seconds. If one of the units e,  f,  k,  M,  n  or  u  is  appended
              instead,  the  increment  is assumed to be given in meter, foot, km, Mile, nautical
              mile or US survey foot, respectively, and  will  be  converted  to  the  equivalent
              degrees  longitude  at the middle latitude of the region (the conversion depends on
              PROJ_ELLIPSOID). If y_inc is given but set to 0 it will be reset  equal  to  x_inc;
              otherwise  it  will  be  converted  to  degrees latitude. All coordinates: If +e is
              appended then the corresponding max x (east) or y (north) may be slightly  adjusted
              to  fit  exactly  the  given  increment  [by  default the increment may be adjusted
              slightly to fit the given domain]. Finally, instead of giving an increment you  may
              specify  the  number  of  nodes  desired  by  appending  +n to the supplied integer
              argument; the increment is then recalculated from  the  number  of  nodes  and  the
              domain.  The  resulting  increment  value  depends  on  whether you have selected a
              gridline-registered or pixel-registered grid;  see  App-file-formats  for  details.
              Note:  if -Rgrdfile is used then the grid spacing has already been initialized; use
              -I to override the values.

       -M     By default any derivatives calculated are in z_units/ x(or y)_units.  However,  the
              user  may choose this option to convert dx,dy in degrees of longitude,latitude into
              meters using a flat Earth approximation, so that gradients are in z_units/meter.

       -N     Turn off strict domain match checking when multiple grids are manipulated  [Default
              will  insist  that  each grid domain is within 1e-4 * grid_spacing of the domain of
              the first grid listed].

       -Rxmin/xmax/ymin/ymax[+r][+uunit] (more …)
              Specify the region of interest.

       -V[level] (more …)
              Select verbosity level [c].

       -bi[ncols][t] (more …)
              Select native binary input. The binary input option only applies to the data  files
              needed by operators LDIST, PDIST, and INSIDE.

       -dinodata (more …)
              Replace input columns that equal nodata with NaN.

       -f[i|o]colinfo (more …)
              Specify data types of input and/or output columns.

       -g[a]x|y|d|X|Y|D|[col]z[+|-]gap[u] (more …)
              Determine data gaps and line breaks.

       -h[i|o][n][+c][+d][+rremark][+rtitle] (more …)
              Skip or produce header record(s).

       -icols[+l][+sscale][+ooffset][,] (more …)
              Select input columns and transformations (0 is first column).

       -n[b|c|l|n][+a][+bBC][+c][+tthreshold] (more …)
              Select interpolation mode for grids.

       -r (more …)
              Set pixel node registration [gridline]. Only used with -R -I.

       -x[[-]n] (more …)
              Limit number of cores used in multi-threaded algorithms (OpenMP required).

       -^ or just -
              Print a short message about the syntax of the command, then exits (NOTE: on Windows
              just use -).

       -+ or just +
              Print  an  extensive  usage  (help)  message,  including  the  explanation  of  any
              module-specific option (but not the GMT common options), then exits.

       -? or no arguments
              Print  a  complete  usage (help) message, including the explanation of all options,
              then exits.

OPERATORS

       Choose among the following 209 operators. “args”  are  the  number  of  input  and  output
       arguments.

                             ┌──────────┬──────┬──────────────────────────┐
                             │Operator  │ args │ Returns                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ABS       │ 1 1  │ abs (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOS      │ 1 1  │ acos (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOSH     │ 1 1  │ acosh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACOT      │ 1 1  │ acot (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ACSC      │ 1 1  │ acsc (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ADD       │ 2 1  │ A + B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │AND       │ 2 1  │ B if A == NaN, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ARC       │ 2 1  │ Return  arc(A,B)  on  [0 │
                             │          │      │ pi]                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │AREA      │ 0 1  │ Area  of  each  gridnode │
                             │          │      │ cell    (in    km^2   if │
                             │          │      │ geographic)              │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASEC      │ 1 1  │ asec (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASIN      │ 1 1  │ asin (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ASINH     │ 1 1  │ asinh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN      │ 1 1  │ atan (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATAN2     │ 2 1  │ atan2 (A, B)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │ATANH     │ 1 1  │ atanh (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BCDF      │ 3 1  │ Binomial      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for p = A, n = B, and  x │
                             │          │      │ = C                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BPDF      │ 3 1  │ Binomial     probability │
                             │          │      │ density function for p = │
                             │          │      │ A, n = B, and x = C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │BEI       │ 1 1  │ bei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BER       │ 1 1  │ ber (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITAND    │ 2 1  │ A   &   B  (bitwise  AND │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITLEFT   │ 2 1  │ A    <<    B    (bitwise │
                             │          │      │ left-shift operator)     │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITNOT    │ 1 1  │ ~A      (bitwise     NOT │
                             │          │      │ operator,  i.e.,  return │
                             │          │      │ two’s complement)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITOR     │ 2 1  │ A   |   B   (bitwise  OR │
                             │          │      │ operator)                │
                             └──────────┴──────┴──────────────────────────┘

                             │BITRIGHT  │ 2 1  │ A    >>    B    (bitwise │
                             │          │      │ right-shift operator)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITTEST   │ 2 1  │ 1  if bit B of A is set, │
                             │          │      │ else  0  (bitwise   TEST │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │BITXOR    │ 2 1  │ A   ^   B  (bitwise  XOR │
                             │          │      │ operator)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │CAZ       │ 2 1  │ Cartesian  azimuth  from │
                             │          │      │ grid  nodes to stack x,y │
                             │          │      │ (i.e., A, B)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │CBAZ      │ 2 1  │ Cartesian   back-azimuth │
                             │          │      │ from grid nodes to stack │
                             │          │      │ x,y (i.e., A, B)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │CDIST     │ 2 1  │ Cartesian       distance │
                             │          │      │ between  grid  nodes and │
                             │          │      │ stack x,y (i.e., A, B)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CDIST2    │ 2 1  │ As  CDIST  but  only  to │
                             │          │      │ nodes that are != 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │CEIL      │ 1 1  │ ceil    (A)    (smallest │
                             │          │      │ integer >= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICRIT   │ 2 1  │ Chi-squared     critical │
                             │          │      │ value  for alpha = A and │
                             │          │      │ nu = B                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHICDF    │ 2 1  │ Chi-squared   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for chi2 = A and nu = B  │
                             ├──────────┼──────┼──────────────────────────┤
                             │CHIPDF    │ 2 1  │ Chi-squared  probability │
                             │          │      │ density   function   for │
                             │          │      │ chi2 = A and nu = B      │
                             ├──────────┼──────┼──────────────────────────┤
                             │COMB      │ 2 1  │ Combinations n_C_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │CORRCOEFF │ 2 1  │ Correlation  coefficient │
                             │          │      │ r(A, B)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │COS       │ 1 1  │ cos (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSD      │ 1 1  │ cos (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COSH      │ 1 1  │ cosh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │COT       │ 1 1  │ cot (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │COTD      │ 1 1  │ cot (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSC       │ 1 1  │ csc (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CSCD      │ 1 1  │ csc (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │CURV      │ 1 1  │ Curvature      of      A │
                             │          │      │ (Laplacian)              │
                             └──────────┴──────┴──────────────────────────┘

                             │D2DX2     │ 1 1  │ d^2(A)/dx^2          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2DY2     │ 1 1  │ d^2(A)/dy^2          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2DXY     │ 1 1  │ d^2(A)/dxdy          2nd │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │D2R       │ 1 1  │ Converts   Degrees    to │
                             │          │      │ Radians                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │DDX       │ 1 1  │ d(A)/dx    Central   1st │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │DDY       │ 1 1  │ d(A)/dy   Central    1st │
                             │          │      │ derivative               │
                             ├──────────┼──────┼──────────────────────────┤
                             │DEG2KM    │ 1 1  │ Converts       Spherical │
                             │          │      │ Degrees to Kilometers    │
                             ├──────────┼──────┼──────────────────────────┤
                             │DENAN     │ 2 1  │ Replace NaNs in  A  with │
                             │          │      │ values from B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │DILOG     │ 1 1  │ dilog (A)                │
                             ├──────────┼──────┼──────────────────────────┤
                             │DIV       │ 2 1  │ A / B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │DUP       │ 1 2  │ Places duplicate of A on │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECDF      │ 2 1  │ Exponential   cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │ECRIT     │ 2 1  │ Exponential distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and lambda = B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │EPDF      │ 2 1  │ Exponential  probability │
                             │          │      │ density function for x = │
                             │          │      │ A and lambda = B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERF       │ 1 1  │ Error function erf (A)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFC      │ 1 1  │ Complementary      Error │
                             │          │      │ function erfc (A)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │EQ        │ 2 1  │ 1 if A == B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ERFINV    │ 1 1  │ Inverse  error  function │
                             │          │      │ of A                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXCH      │ 2 2  │ Exchanges A and B on the │
                             │          │      │ stack                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXP       │ 1 1  │ exp (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FACT      │ 1 1  │ A! (A factorial)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │EXTREMA   │ 1 1  │ Local  Extrema: +2/-2 is │
                             │          │      │ max/min, +1/-1 is saddle │
                             │          │      │ with  max/min  in  x,  0 │
                             │          │      │ elsewhere                │
                             └──────────┴──────┴──────────────────────────┘

                             │FCDF      │ 3 1  │ F             cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for F = A, nu1 = B,  and │
                             │          │      │ nu2 = C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │FCRIT     │ 3 1  │ F  distribution critical │
                             │          │      │ value for alpha = A, nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLIPLR    │ 1 1  │ Reverse  order of values │
                             │          │      │ in each row              │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLIPUD    │ 1 1  │ Reverse order of  values │
                             │          │      │ in each column           │
                             ├──────────┼──────┼──────────────────────────┤
                             │FLOOR     │ 1 1  │ floor    (A)   (greatest │
                             │          │      │ integer <= A)            │
                             ├──────────┼──────┼──────────────────────────┤
                             │FMOD      │ 2 1  │ A % B  (remainder  after │
                             │          │      │ truncated division)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │FPDF      │ 3 1  │ F   probability  density │
                             │          │      │ function for F = A,  nu1 │
                             │          │      │ = B, and nu2 = C         │
                             ├──────────┼──────┼──────────────────────────┤
                             │GE        │ 2 1  │ 1 if A >= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │GT        │ 2 1  │ 1 if A > B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │HYPOT     │ 2 1  │ hypot (A, B) = sqrt (A*A │
                             │          │      │ + B*B)                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │I0        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 0) │
                             ├──────────┼──────┼──────────────────────────┤
                             │I1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │IFELSE    │ 3 1  │ B if A != 0, else C      │
                             ├──────────┼──────┼──────────────────────────┤
                             │IN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (1st kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │INRANGE   │ 3 1  │ 1 if B <= A <= C, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │INSIDE    │ 1 1  │ 1   when  inside  or  on │
                             │          │      │ polygon(s) in A, else 0  │
                             ├──────────┼──────┼──────────────────────────┤
                             │INV       │ 1 1  │ 1 / A                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISFINITE  │ 1 1  │ 1 if A is finite, else 0 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ISNAN     │ 1 1  │ 1 if A == NaN, else 0    │
                             ├──────────┼──────┼──────────────────────────┤
                             │J0        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │J1        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (1st kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │JN        │ 2 1  │ Bessel  function  of   A │
                             │          │      │ (1st kind, order B)      │
                             └──────────┴──────┴──────────────────────────┘

                             │K0        │ 1 1  │ Modified Kelvin function │
                             │          │      │ of A (2nd kind, order 0) │
                             ├──────────┼──────┼──────────────────────────┤
                             │K1        │ 1 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order 1) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KEI       │ 1 1  │ kei (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KER       │ 1 1  │ ker (A)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │KM2DEG    │ 1 1  │ Converts  Kilometers  to │
                             │          │      │ Spherical Degrees        │
                             ├──────────┼──────┼──────────────────────────┤
                             │KN        │ 2 1  │ Modified Bessel function │
                             │          │      │ of A (2nd kind, order B) │
                             ├──────────┼──────┼──────────────────────────┤
                             │KURT      │ 1 1  │ Kurtosis of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCDF      │ 1 1  │ Laplace       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LCRIT     │ 1 1  │ Laplace     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDIST     │ 1 1  │ Compute minimum distance │
                             │          │      │ (in  km  if  -fg)   from │
                             │          │      │ lines  in  multi-segment │
                             │          │      │ ASCII file A             │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDIST2    │ 2 1  │ As LDIST, from lines  in │
                             │          │      │ ASCII file B but only to │
                             │          │      │ nodes where A != 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │LDISTG    │ 0 1  │ As LDIST,  but  operates │
                             │          │      │ on   the  GSHHG  dataset │
                             │          │      │ (see    -A,    -D    for │
                             │          │      │ options).                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LE        │ 2 1  │ 1 if A <= B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG       │ 1 1  │ log (A) (natural log)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG10     │ 1 1  │ log10 (A) (base 10)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG1P     │ 1 1  │ log  (1+A) (accurate for │
                             │          │      │ small A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOG2      │ 1 1  │ log2 (A) (base 2)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │LMSSCL    │ 1 1  │ LMS scale estimate  (LMS │
                             │          │      │ STD) of A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │LMSSCLW   │ 2 1  │ Weighted    LMS    scale │
                             │          │      │ estimate (LMS STD) of  A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │LOWER     │ 1 1  │ The   lowest   (minimum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │LPDF      │ 1 1  │ Laplace      probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             └──────────┴──────┴──────────────────────────┘

                             │LRAND     │ 2 1  │ Laplace   random   noise │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             ├──────────┼──────┼──────────────────────────┤
                             │LT        │ 2 1  │ 1 if A < B, else 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAD       │ 1 1  │ Median          Absolute │
                             │          │      │ Deviation (L1 STD) of A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │MAX       │ 2 1  │ Maximum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEAN      │ 1 1  │ Mean value of A          │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEANW     │ 2 1  │ Weighted mean value of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEDIAN    │ 1 1  │ Median value of A        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MEDIANW   │ 2 1  │ Weighted median value of │
                             │          │      │ A for weights in B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MIN       │ 2 1  │ Minimum of A and B       │
                             ├──────────┼──────┼──────────────────────────┤
                             │MOD       │ 2 1  │ A mod B (remainder after │
                             │          │      │ floored division)        │
                             ├──────────┼──────┼──────────────────────────┤
                             │MODE      │ 1 1  │ Mode value (Least Median │
                             │          │      │ of Squares) of A         │
                             ├──────────┼──────┼──────────────────────────┤
                             │MODEW     │ 2 1  │ Weighted    mode   value │
                             │          │      │ (Least     Median     of │
                             │          │      │ Squares)    of   A   for │
                             │          │      │ weights in B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │MUL       │ 2 1  │ A * B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NAN       │ 2 1  │ NaN if A == B, else A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEG       │ 1 1  │ -A                       │
                             ├──────────┼──────┼──────────────────────────┤
                             │NEQ       │ 2 1  │ 1 if A != B, else 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │NORM      │ 1 1  │ Normalize     (A)     so │
                             │          │      │ max(A)-min(A) = 1        │
                             ├──────────┼──────┼──────────────────────────┤
                             │NOT       │ 1 1  │ NaN  if A == NaN, 1 if A │
                             │          │      │ == 0, else 0             │
                             ├──────────┼──────┼──────────────────────────┤
                             │NRAND     │ 2 1  │ Normal,  random   values │
                             │          │      │ with  mean  A  and  std. │
                             │          │      │ deviation B              │
                             ├──────────┼──────┼──────────────────────────┤
                             │OR        │ 2 1  │ NaN if B == NaN, else A  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PCDF      │ 2 1  │ Poisson       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A and lambda = B │
                             ├──────────┼──────┼──────────────────────────┤
                             │PDIST     │ 1 1  │ Compute minimum distance │
                             │          │      │ (in   km  if  -fg)  from │
                             │          │      │ points in ASCII file A   │
                             └──────────┴──────┴──────────────────────────┘

                             │PDIST2    │ 2 1  │ As PDIST, from points in │
                             │          │      │ ASCII file B but only to │
                             │          │      │ nodes where A != 0       │
                             ├──────────┼──────┼──────────────────────────┤
                             │PERM      │ 2 1  │ Permutations n_P_r, with │
                             │          │      │ n = A and r = B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLM       │ 3 1  │ Associated      Legendre │
                             │          │      │ polynomial P(A) degree B │
                             │          │      │ order C                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │PLMg      │ 3 1  │ Normalized    associated │
                             │          │      │ Legendre polynomial P(A) │
                             │          │      │ degree    B    order   C │
                             │          │      │ (geophysical convention) │
                             ├──────────┼──────┼──────────────────────────┤
                             │POINT     │ 1 2  │ Compute  mean  x  and  y │
                             │          │      │ from  ASCII  file  A and │
                             │          │      │ place them on the stack  │
                             ├──────────┼──────┼──────────────────────────┤
                             │POP       │ 1 0  │ Delete top element  from │
                             │          │      │ the stack                │
                             ├──────────┼──────┼──────────────────────────┤
                             │POW       │ 2 1  │ A ^ B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PPDF      │ 2 1  │ Poisson     distribution │
                             │          │      │ P(x,lambda), with x =  A │
                             │          │      │ and lambda = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │PQUANT    │ 2 1  │ The     B’th    Quantile │
                             │          │      │ (0-100%) of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │PQUANTW   │ 3 1  │ The    C’th     weighted │
                             │          │      │ quantile  (0-100%)  of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │PSI       │ 1 1  │ Psi (or Digamma) of A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │PV        │ 3 1  │ Legendre function  Pv(A) │
                             │          │      │ of  degree v = real(B) + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │QV        │ 3 1  │ Legendre function  Qv(A) │
                             │          │      │ of  degree v = real(B) + │
                             │          │      │ imag(C)                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2        │ 2 1  │ R2 = A^2 + B^2           │
                             ├──────────┼──────┼──────────────────────────┤
                             │R2D       │ 1 1  │ Convert    Radians    to │
                             │          │      │ Degrees                  │
                             ├──────────┼──────┼──────────────────────────┤
                             │RAND      │ 2 1  │ Uniform   random  values │
                             │          │      │ between A and B          │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCDF      │ 1 1  │ Rayleigh      cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │RCRIT     │ 1 1  │ Rayleigh    distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             └──────────┴──────┴──────────────────────────┘

                             │RINT      │ 1 1  │ rint   (A)   (round   to │
                             │          │      │ integral  value  nearest │
                             │          │      │ to A)                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │RMS       │ 1 1  │ Root-mean-square of A    │
                             ├──────────┼──────┼──────────────────────────┤
                             │RMSW      │ 1 1  │ Root-mean-square  of   A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │RPDF      │ 1 1  │ Rayleigh     probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROLL      │ 2 0  │ Cyclicly  shifts the top │
                             │          │      │ A  stack  items  by   an │
                             │          │      │ amount B                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROTX      │ 2 1  │ Rotate    A    by    the │
                             │          │      │ (constant)  shift  B  in │
                             │          │      │ x-direction              │
                             ├──────────┼──────┼──────────────────────────┤
                             │ROTY      │ 2 1  │ Rotate    A    by    the │
                             │          │      │ (constant)  shift  B  in │
                             │          │      │ y-direction              │
                             ├──────────┼──────┼──────────────────────────┤
                             │SDIST     │ 2 1  │ Spherical         (Great │
                             │          │      │ circle|geodesic)         │
                             │          │      │ distance (in km) between │
                             │          │      │ nodes and stack (A, B)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SDIST2    │ 2 1  │ As  SDIST  but  only  to │
                             │          │      │ nodes that are != 0      │
                             ├──────────┼──────┼──────────────────────────┤
                             │SAZ       │ 2 1  │ Spherical  azimuth  from │
                             │          │      │ grid nodes to stack lon, │
                             │          │      │ lat (i.e., A, B)         │
                             ├──────────┼──────┼──────────────────────────┤
                             │SBAZ      │ 2 1  │ Spherical   back-azimuth │
                             │          │      │ from grid nodes to stack │
                             │          │      │ lon, lat (i.e., A, B)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │SEC       │ 1 1  │ sec (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SECD      │ 1 1  │ sec (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIGN      │ 1 1  │ sign (+1 or -1) of A     │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIN       │ 1 1  │ sin (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINC      │ 1 1  │ sinc       (A)      (sin │
                             │          │      │ (pi*A)/(pi*A))           │
                             ├──────────┼──────┼──────────────────────────┤
                             │SIND      │ 1 1  │ sin (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │SINH      │ 1 1  │ sinh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │SKEW      │ 1 1  │ Skewness of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQR       │ 1 1  │ A^2                      │
                             ├──────────┼──────┼──────────────────────────┤
                             │SQRT      │ 1 1  │ sqrt (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │STD       │ 1 1  │ Standard deviation of A  │
                             └──────────┴──────┴──────────────────────────┘

                             │STDW      │ 2 1  │ Weighted        standard │
                             │          │      │ deviation   of   A   for │
                             │          │      │ weights in B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEP      │ 1 1  │ Heaviside step function: │
                             │          │      │ H(A)                     │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEPX     │ 1 1  │ Heaviside  step function │
                             │          │      │ in x: H(x-A)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │STEPY     │ 1 1  │ Heaviside step  function │
                             │          │      │ in y: H(y-A)             │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUB       │ 2 1  │ A - B                    │
                             ├──────────┼──────┼──────────────────────────┤
                             │SUM       │ 1 1  │ Sum of all values in A   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAN       │ 1 1  │ tan (A) (A in radians)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAND      │ 1 1  │ tan (A) (A in degrees)   │
                             ├──────────┼──────┼──────────────────────────┤
                             │TANH      │ 1 1  │ tanh (A)                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │TAPER     │ 2 1  │ Unit             weights │
                             │          │      │ cosine-tapered  to  zero │
                             │          │      │ within  A and B of x and │
                             │          │      │ y grid margins           │
                             ├──────────┼──────┼──────────────────────────┤
                             │TCDF      │ 2 1  │ Student’s  t  cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for t = A, and nu = B    │
                             ├──────────┼──────┼──────────────────────────┤
                             │TCRIT     │ 2 1  │ Student’s t distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A and nu = B           │
                             ├──────────┼──────┼──────────────────────────┤
                             │TN        │ 2 1  │ Chebyshev     polynomial │
                             │          │      │ Tn(-1<t<+1,n),  with t = │
                             │          │      │ A, and n = B             │
                             ├──────────┼──────┼──────────────────────────┤
                             │TPDF      │ 2 1  │ Student’s t  probability │
                             │          │      │ density function for t = │
                             │          │      │ A, and nu = B            │
                             ├──────────┼──────┼──────────────────────────┤
                             │TRIM      │ 3 1  │ Alpha-trim C to  NaN  if │
                             │          │      │ values  fall  in tails A │
                             │          │      │ and B (in percentage)    │
                             ├──────────┼──────┼──────────────────────────┤
                             │UPPER     │ 1 1  │ The  highest   (maximum) │
                             │          │      │ value of A               │
                             ├──────────┼──────┼──────────────────────────┤
                             │VAR       │ 1 1  │ Variance of A            │
                             ├──────────┼──────┼──────────────────────────┤
                             │VARW      │ 2 1  │ Weighted  variance  of A │
                             │          │      │ for weights in B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │WCDF      │ 3 1  │ Weibull       cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for x = A,  scale  =  B, │
                             │          │      │ and shape = C            │
                             └──────────┴──────┴──────────────────────────┘

                             │WCRIT     │ 3 1  │ Weibull     distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │WPDF      │ 3 1  │ Weibull          density │
                             │          │      │ distribution             │
                             │          │      │ P(x,scale,shape), with x │
                             │          │      │ =  A,  scale  =  B,  and │
                             │          │      │ shape = C                │
                             ├──────────┼──────┼──────────────────────────┤
                             │WRAP      │ 1 1  │ wrap A in  radians  onto │
                             │          │      │ [-pi,pi]                 │
                             ├──────────┼──────┼──────────────────────────┤
                             │XOR       │ 2 1  │ 0  if  A == NaN and B == │
                             │          │      │ NaN, NaN if  B  ==  NaN, │
                             │          │      │ else A                   │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y0        │ 1 1  │ Bessel   function  of  A │
                             │          │      │ (2nd kind, order 0)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │Y1        │ 1 1  │ Bessel  function  of   A │
                             │          │      │ (2nd kind, order 1)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │YLM       │ 2 2  │ Re         and        Im │
                             │          │      │ orthonormalized          │
                             │          │      │ spherical      harmonics │
                             │          │      │ degree A order B         │
                             ├──────────┼──────┼──────────────────────────┤
                             │YLMg      │ 2 2  │ Cos and  Sin  normalized │
                             │          │      │ spherical      harmonics │
                             │          │      │ degree   A    order    B │
                             │          │      │ (geophysical convention) │
                             ├──────────┼──────┼──────────────────────────┤
                             │YN        │ 2 1  │ Bessel   function  of  A │
                             │          │      │ (2nd kind, order B)      │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCDF      │ 1 1  │ Normal        cumulative │
                             │          │      │ distribution    function │
                             │          │      │ for z = A                │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZPDF      │ 1 1  │ Normal       probability │
                             │          │      │ density function for z = │
                             │          │      │ A                        │
                             ├──────────┼──────┼──────────────────────────┤
                             │ZCRIT     │ 1 1  │ Normal      distribution │
                             │          │      │ critical value for alpha │
                             │          │      │ = A                      │
                             └──────────┴──────┴──────────────────────────┘

SYMBOLS

       The following symbols have special meaning:

                              ┌───────┬──────────────────────────────────┐
                              │PI     │ 3.1415926…                       │
                              ├───────┼──────────────────────────────────┤
                              │E      │ 2.7182818…                       │
                              ├───────┼──────────────────────────────────┤
                              │EULER  │ 0.5772156…                       │
                              ├───────┼──────────────────────────────────┤
                              │EPS_F  │ 1.192092896e-07          (single │
                              │       │ precision epsilon                │
                              ├───────┼──────────────────────────────────┤
                              │XMIN   │ Minimum x value                  │
                              └───────┴──────────────────────────────────┘

                              │XMAX   │ Maximum x value                  │
                              ├───────┼──────────────────────────────────┤
                              │XRANGE │ Range of x values                │
                              ├───────┼──────────────────────────────────┤
                              │XINC   │ x increment                      │
                              ├───────┼──────────────────────────────────┤
                              │NX     │ The number of x nodes            │
                              ├───────┼──────────────────────────────────┤
                              │YMIN   │ Minimum y value                  │
                              ├───────┼──────────────────────────────────┤
                              │YMAX   │ Maximum y value                  │
                              ├───────┼──────────────────────────────────┤
                              │YRANGE │ Range of y values                │
                              ├───────┼──────────────────────────────────┤
                              │YINC   │ y increment                      │
                              ├───────┼──────────────────────────────────┤
                              │NY     │ The number of y nodes            │
                              ├───────┼──────────────────────────────────┤
                              │X      │ Grid with x-coordinates          │
                              ├───────┼──────────────────────────────────┤
                              │Y      │ Grid with y-coordinates          │
                              ├───────┼──────────────────────────────────┤
                              │XNORM  │ Grid  with normalized [-1 to +1] │
                              │       │ x-coordinates                    │
                              ├───────┼──────────────────────────────────┤
                              │YNORM  │ Grid with normalized [-1 to  +1] │
                              │       │ y-coordinates                    │
                              ├───────┼──────────────────────────────────┤
                              │XCOL   │ Grid  with  column numbers 0, 1, │
                              │       │ …, NX-1                          │
                              ├───────┼──────────────────────────────────┤
                              │YROW   │ Grid with row numbers 0,  1,  …, │
                              │       │ NY-1                             │
                              ├───────┼──────────────────────────────────┤
                              │NODE   │ Grid  with node numbers 0, 1, …, │
                              │       │ (NX*NY)-1                        │
                              └───────┴──────────────────────────────────┘

NOTES ON OPERATORS

       1.  For Cartesian grids the operators MEAN, MEDIAN, MODE, LMSSCL, MAD, PQUANT,  RMS,  STD,
           and  VAR  return  the  expected  value from the given matrix.  However, for geographic
           grids we perform a spherically weighted calculation where each node value is  weighted
           by the geographic area represented by that node.

       2.  The  operator  SDIST calculates spherical distances in km between the (lon, lat) point
           on the stack and all node positions in the grid. The grid domain and  the  (lon,  lat)
           point  are expected to be in degrees.  Similarly, the SAZ and SBAZ operators calculate
           spherical azimuth and back-azimuths in degrees, respectively. The operators LDIST  and
           PDIST  compute  spherical  distances  in km if -fg is set or implied, else they return
           Cartesian distances. Note: If the current PROJ_ELLIPSOID is ellipsoidal then geodesics
           are  used  in  calculations of distances, which can be slow.  You can trade speed with
           accuracy by changing the algorithm used to compute the geodesic (see PROJ_GEODESIC).

           The operator LDISTG is a version of LDIST that operates on the GSHHG data. Instead  of
           reading  an  ASCII file, it directly accesses one of the GSHHG data sets as determined
           by the -D and -A options.

       3.  The operator POINT reads a ASCII table, computes the mean x  and  mean  y  values  and
           places  these  on  the  stack.   If geographic data then we use the mean 3-D vector to
           determine the mean location.

       4.  The operator PLM calculates the associated Legendre polynomial of degree L and order M
           (0 <= M <= L), and its argument is the sine of the latitude. PLM is not normalized and
           includes the Condon-Shortley phase (-1)^M. PLMg is normalized in the way that is  most
           commonly  used in geophysics. The C-S phase can be added by using -M as argument.  PLM
           will overflow at higher degrees, whereas PLMg is stable until ultra high  degrees  (at
           least 3000).

       5.  The  operators  YLM and YLMg calculate normalized spherical harmonics for degree L and
           order M (0 <= M <= L) for all positions in  the  grid,  which  is  assumed  to  be  in
           degrees.  YLM  and  YLMg  return  two  grids,  the  real (cosine) and imaginary (sine)
           component of the complex spherical harmonic. Use the POP operator (and  EXCH)  to  get
           rid of one of them, or save both by giving two consecutive = file.nc calls.

           The  orthonormalized  complex  harmonics  YLM  are  most  commonly used in physics and
           seismology. The square of YLM integrates to 1 over a sphere. In  geophysics,  YLMg  is
           normalized   to   produce  unit  power  when  averaging  the  cosine  and  sine  terms
           (separately!) over a sphere  (i.e.,  their  squares  each  integrate  to  4  pi).  The
           Condon-Shortley  phase  (-1)^M  is not included in YLM or YLMg, but it can be added by
           using -M as argument.

       6.  All the derivatives are based on central finite  differences,  with  natural  boundary
           conditions, and are Cartesian derivatives.

       7.  Files  that  have the same names as some operators, e.g., ADD, SIGN, =, etc. should be
           identified by prepending the current directory (i.e., ./LOG).

       8.  Piping of files is not allowed.

       9.  The stack depth limit is hard-wired to 100.

       10. All functions expecting a positive radius  (e.g.,  LOG,  KEI,  etc.)  are  passed  the
           absolute  value of their argument. (9) The bitwise operators (BITAND, BITLEFT, BITNOT,
           BITOR, BITRIGHT, BITTEST, and BITXOR) convert a  grid’s  single  precision  values  to
           unsigned  32-bit  ints  to  perform  the bitwise operations. Consequently, the largest
           whole integer value that can be stored in a float grid  is  2^24  or  16,777,216.  Any
           higher  result  will  be masked to fit in the lower 24 bits.  Thus, bit operations are
           effectively limited to 24  bit.   All  bitwise  operators  return  NaN  if  given  NaN
           arguments or bit-settings <= 0.

       11. When OpenMP support is compiled in, a few operators will take advantage of the ability
           to spread the load onto several cores.  At present, the list  of  such  operators  is:
           LDIST, LDIST2, PDIST, PDIST2, SAZ, SBAZ, SDIST, YLM, and grd_YLMg.

GRID VALUES PRECISION

       Regardless  of  the  precision of the input data, GMT programs that create grid files will
       internally hold the grids in 4-byte floating point arrays. This is done to conserve memory
       and  furthermore  most  if  not  all  real  data can be stored using 4-byte floating point
       values. Data with  higher  precision  (i.e.,  double  precision  values)  will  lose  that
       precision  once  GMT  operates  on  the  grid  or  writes  out new grids. To limit loss of
       precision when processing data you should always consider normalizing the  data  prior  to
       processing.

GRID FILE FORMATS

       By  default  GMT  writes  out grid as single precision floats in a COARDS-complaint netCDF
       file format. However, GMT is able to produce grid files in many other commonly  used  grid
       file formats and also facilitates so called “packing” of grids, writing out floating point
       data as 1- or 2-byte integers. (more …)

GEOGRAPHICAL AND TIME COORDINATES

       When the output grid  type  is  netCDF,  the  coordinates  will  be  labeled  “longitude”,
       “latitude”, or “time” based on the attributes of the input data or grid (if any) or on the
       -f or -R options. For example, both  -f0x  -f1t  and  -R90w/90e/0t/3t  will  result  in  a
       longitude/time grid. When the x, y, or z coordinate is time, it will be stored in the grid
       as relative time since epoch as specified by TIME_UNIT and TIME_EPOCH in the gmt.conf file
       or on the command line. In addition, the unit attribute of the time variable will indicate
       both this unit and epoch.

STORE, RECALL AND CLEAR

       You may store intermediate calculations to a named variable that you may recall and  place
       on  the  stack  at  a later time. This is useful if you need access to a computed quantity
       many times in your expression as it  will  shorten  the  overall  expression  and  improve
       readability.  To  save a result you use the special operator STO@label, where label is the
       name you choose to give the quantity. To recall the stored result to the stack at a  later
       time,  use [RCL]@label, i.e., RCL is optional. To clear memory you may use CLR@label. Note
       that STO and CLR leave the stack unchanged.

GSHHS INFORMATION

       The coastline database is GSHHG (formerly GSHHS) which is  compiled  from  three  sources:
       World Vector Shorelines (WVS), CIA World Data Bank II (WDBII), and Atlas of the Cryosphere
       (AC, for Antarctica only).   Apart  from  Antarctica,  all  level-1  polygons  (ocean-land
       boundary)  are  derived  from the more accurate WVS while all higher level polygons (level
       2-4,          representing          land/lake,          lake/island-in-lake,           and
       island-in-lake/lake-in-island-in-lake  boundaries)  are  taken from WDBII.  The Antarctica
       coastlines come in two flavors: ice-front or grounding line, selectable via the -A option.
       Much  processing  has  taken place to convert WVS, WDBII, and AC data into usable form for
       GMT:  assembling  closed  polygons  from  line  segments,  checking  for  duplicates,  and
       correcting  for  crossings between polygons.  The area of each polygon has been determined
       so that the user may choose not to draw features smaller than a minimum area (see -A); one
       may  also  limit  the  highest  hierarchical  level  of  polygons to be included (4 is the
       maximum). The 4 lower-resolution databases were derived from the full resolution  database
       using  the Douglas-Peucker line-simplification algorithm. The classification of rivers and
       borders follow that of the WDBII. See the GMT Cookbook and Technical Reference Appendix  K
       for further details.

MACROS

       Users  may save their favorite operator combinations as macros via the file grdmath.macros
       in their current or user directory. The file may contain any number  of  macros  (one  per
       record);  comment  lines  starting with # are skipped. The format for the macros is name =
       arg1 arg2  arg2 : comment where name is how the macro will be used.  When  this  operator
       appears  on  the command line we simply replace it with the listed argument list. No macro
       may call another macro. As an example, the following macro expects three arguments (radius
       x0 y0) and sets the modes that are inside the given circle to 1 and those outside to 0:

       INCIRCLE = CDIST EXCH DIV 1 LE : usage: r x y INCIRCLE to return 1 inside circle

       Note:  Because geographic or time constants may be present in a macro, it is required that
       the optional comment flag (:) must be followed by a space.

EXAMPLES

       To compute all distances to north pole:

              gmt grdmath -Rg -I1 0 90 SDIST = dist_to_NP.nc

       To take log10 of the average of 2 files, use

              gmt grdmath file1.nc file2.nc ADD 0.5 MUL LOG10 = file3.nc

       Given the file ages.nc, which holds seafloor ages in m.y., use the relation depth(in m)  =
       2500 + 350 * sqrt (age) to estimate normal seafloor depths:

              gmt grdmath ages.nc SQRT 350 MUL 2500 ADD = depths.nc

       To  find  the  angle a (in degrees) of the largest principal stress from the stress tensor
       given by the three files s_xx.nc s_yy.nc, and s_xy.nc from the relation tan (2*a)  =  2  *
       s_xy / (s_xx - s_yy), use

              gmt grdmath 2 s_xy.nc MUL s_xx.nc s_yy.nc SUB DIV ATAN 2 DIV = direction.nc

       To  calculate  the fully normalized spherical harmonic of degree 8 and order 4 on a 1 by 1
       degree world map, using the real amplitude 0.4 and the imaginary amplitude 1.1:

              gmt grdmath -R0/360/-90/90 -I1 8 4 YLM 1.1 MUL EXCH 0.4 MUL ADD = harm.nc

       To extract the locations of local maxima that exceed 100 mGal in the file faa.nc:

              gmt grdmath faa.nc DUP EXTREMA 2 EQ MUL DUP 100 GT MUL 0 NAN = z.nc
              gmt grd2xyz z.nc -s > max.xyz

       To demonstrate the use of named variables, consider this radial wave where  we  store  and
       recall the normalized radial arguments in radians:

              gmt grdmath -R0/10/0/10 -I0.25 5 5 CDIST 2 MUL PI MUL 5 DIV STO@r COS @r SIN MUL = wave.nc

       To creat a dumb file saved as a 32 bits float GeoTiff using GDAL, run

              gmt grdmath -Rd -I10 X Y MUL = lixo.tiff=gd:GTiff

REFERENCES

       Abramowitz,  M.,  and  I.  A.  Stegun,  1964,  Handbook of Mathematical Functions, Applied
       Mathematics Series, vol. 55, Dover, New York.

       Holmes, S. A., and W. E. Featherstone, 2002, A unified approach to the Clenshaw  summation
       and the recursive computation of very high degree and order normalised associated Legendre
       functions. Journal of Geodesy, 76, 279-299.

       Press, W. H., S. A. Teukolsky, W. T. Vetterling,  and  B.  P.  Flannery,  1992,  Numerical
       Recipes, 2nd edition, Cambridge Univ., New York.

       Spanier, J., and K. B. Oldman, 1987, An Atlas of Functions, Hemisphere Publishing Corp.

SEE ALSO

       gmt, gmtmath, grd2xyz, grdedit, grdinfo, xyz2grd

COPYRIGHT

       2018, P. Wessel, W. H. F. Smith, R. Scharroo, J. Luis, and F. Wobbe