Provided by: llvm-8_8-3~ubuntu18.04.2_amd64 bug

NAME

       llvm-mca - LLVM Machine Code Analyzer

SYNOPSIS

       llvm-mca [options] [input]

DESCRIPTION

       llvm-mca  is  a  performance  analysis  tool that uses information available in LLVM (e.g.
       scheduling models) to statically measure the performance of machine  code  in  a  specific
       CPU.

       Performance  is measured in terms of throughput as well as processor resource consumption.
       The tool currently works for processors with an out-of-order backend, for which there is a
       scheduling model available in LLVM.

       The  main goal of this tool is not just to predict the performance of the code when run on
       the target, but also help with diagnosing potential performance issues.

       Given an assembly code sequence, llvm-mca estimates the Instructions Per Cycle  (IPC),  as
       well  as hardware resource pressure. The analysis and reporting style were inspired by the
       IACA tool from Intel.

       For example, you can compile code with clang, output assembly, and pipe it  directly  into
       llvm-mca for analysis:

          $ clang foo.c -O2 -target x86_64-unknown-unknown -S -o - | llvm-mca -mcpu=btver2

       Or for Intel syntax:

          $ clang foo.c -O2 -target x86_64-unknown-unknown -mllvm -x86-asm-syntax=intel -S -o - | llvm-mca -mcpu=btver2

OPTIONS

       If  input  is  “-” or omitted, llvm-mca reads from standard input. Otherwise, it will read
       from the specified filename.

       If the -o option is omitted, then llvm-mca will send its output to standard output if  the
       input  is  from standard input.  If the -o option specifies “-“, then the output will also
       be sent to standard output.

       -help  Print a summary of command line options.

       -mtriple=<target triple>
              Specify a target triple string.

       -march=<arch>
              Specify the architecture for which to analyze the code. It  defaults  to  the  host
              default target.

       -mcpu=<cpuname>
              Specify  the  processor for which to analyze the code.  By default, the cpu name is
              autodetected from the host.

       -output-asm-variant=<variant id>
              Specify the output assembly variant for the report generated by the tool.  On  x86,
              possible  values  are  [0, 1]. A value of 0 (vic. 1) for this flag enables the AT&T
              (vic. Intel) assembly format for the code printed out by the tool in  the  analysis
              report.

       -dispatch=<width>
              Specify  a  different dispatch width for the processor. The dispatch width defaults
              to field ‘IssueWidth’ in the processor scheduling model.  If width  is  zero,  then
              the default dispatch width is used.

       -register-file-size=<size>
              Specify  the  size  of the register file. When specified, this flag limits how many
              physical registers are available for register renaming purposes. A  value  of  zero
              for this flag means “unlimited number of physical registers”.

       -iterations=<number of iterations>
              Specify  the  number  of iterations to run. If this flag is set to 0, then the tool
              sets the number of iterations to a default value (i.e. 100).

       -noalias=<bool>
              If set, the tool assumes that loads and stores don’t alias.  This  is  the  default
              behavior.

       -lqueue=<load queue size>
              Specify the size of the load queue in the load/store unit emulated by the tool.  By
              default, the tool assumes an unbound number of entries in the load queue.  A  value
              of zero for this flag is ignored, and the default load queue size is used instead.

       -squeue=<store queue size>
              Specify the size of the store queue in the load/store unit emulated by the tool. By
              default, the tool assumes an unbound number of entries in the store queue. A  value
              of zero for this flag is ignored, and the default store queue size is used instead.

       -timeline
              Enable the timeline view.

       -timeline-max-iterations=<iterations>
              Limit  the  number  of  iterations  to  print in the timeline view. By default, the
              timeline view prints information for up to 10 iterations.

       -timeline-max-cycles=<cycles>
              Limit the number of cycles in the timeline view. By default, the number  of  cycles
              is set to 80.

       -resource-pressure
              Enable the resource pressure view. This is enabled by default.

       -register-file-stats
              Enable register file usage statistics.

       -dispatch-stats
              Enable  extra  dispatch  statistics.  This  view  collects and analyzes instruction
              dispatch events, as well as static/dynamic dispatch  stall  events.  This  view  is
              disabled by default.

       -scheduler-stats
              Enable  extra  scheduler  statistics.  This  view collects and analyzes instruction
              issue events. This view is disabled by default.

       -retire-stats
              Enable extra retire control unit statistics. This view is disabled by default.

       -instruction-info
              Enable the instruction info view. This is enabled by default.

       -all-stats
              Print all hardware  statistics.  This  enables  extra  statistics  related  to  the
              dispatch  logic,  the  hardware  schedulers,  the  register file(s), and the retire
              control unit. This option is disabled by default.

       -all-views
              Enable all the view.

       -instruction-tables
              Prints resource pressure information based on the static information available from
              the  processor  model.  This  differs  from  the  resource pressure view because it
              doesn’t require that the code is  simulated.  It  instead  prints  the  theoretical
              uniform distribution of resource pressure for every instruction in sequence.

EXIT STATUS

       llvm-mca  returns  0 on success. Otherwise, an error message is printed to standard error,
       and the tool returns 1.

USING MARKERS TO ANALYZE SPECIFIC CODE BLOCKS

       llvm-mca allows for the optional usage of special code comments to  mark  regions  of  the
       assembly  code to be analyzed.  A comment starting with substring LLVM-MCA-BEGIN marks the
       beginning of a code region. A comment starting with substring LLVM-MCA-END marks  the  end
       of a code region.  For example:

          # LLVM-MCA-BEGIN My Code Region
            ...
          # LLVM-MCA-END

       Multiple  regions  can  be specified provided that they do not overlap.  A code region can
       have an optional description. If  no  user-defined  region  is  specified,  then  llvm-mca
       assumes a default region which contains every instruction in the input file.  Every region
       is analyzed in isolation, and the final performance report is the union of all the reports
       generated for every code region.

       Inline assembly directives may be used from source code to annotate the assembly text:

          int foo(int a, int b) {
            __asm volatile("# LLVM-MCA-BEGIN foo");
            a += 42;
            __asm volatile("# LLVM-MCA-END");
            a *= b;
            return a;
          }

HOW LLVM-MCA WORKS

       llvm-mca  takes  assembly  code  as  input. The assembly code is parsed into a sequence of
       MCInst with the help of the existing LLVM target assembly parsers. The parsed sequence  of
       MCInst is then analyzed by a Pipeline module to generate a performance report.

       The  Pipeline  module  simulates  the  execution of the machine code sequence in a loop of
       iterations (default is 100). During this  process,  the  pipeline  collects  a  number  of
       execution  related  statistics.  At  the  end  of this process, the pipeline generates and
       prints a report from the collected statistics.

       Here is an example of a performance report generated by the tool for a dot-product of  two
       packed  float  vectors  of  four  elements.  The analysis is conducted for target x86, cpu
       btver2.  The following result can be produced via the following command using the  example
       located at test/tools/llvm-mca/X86/BtVer2/dot-product.s:

          $ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=300 dot-product.s

          Iterations:        300
          Instructions:      900
          Total Cycles:      610
          Total uOps:        900

          Dispatch Width:    2
          uOps Per Cycle:    1.48
          IPC:               1.48
          Block RThroughput: 2.0

          Instruction Info:
          [1]: #uOps
          [2]: Latency
          [3]: RThroughput
          [4]: MayLoad
          [5]: MayStore
          [6]: HasSideEffects (U)

          [1]    [2]    [3]    [4]    [5]    [6]    Instructions:
           1      2     1.00                        vmulps      %xmm0, %xmm1, %xmm2
           1      3     1.00                        vhaddps     %xmm2, %xmm2, %xmm3
           1      3     1.00                        vhaddps     %xmm3, %xmm3, %xmm4

          Resources:
          [0]   - JALU0
          [1]   - JALU1
          [2]   - JDiv
          [3]   - JFPA
          [4]   - JFPM
          [5]   - JFPU0
          [6]   - JFPU1
          [7]   - JLAGU
          [8]   - JMul
          [9]   - JSAGU
          [10]  - JSTC
          [11]  - JVALU0
          [12]  - JVALU1
          [13]  - JVIMUL

          Resource pressure per iteration:
          [0]    [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]   [11]   [12]   [13]
           -      -      -     2.00   1.00   2.00   1.00    -      -      -      -      -      -      -

          Resource pressure by instruction:
          [0]    [1]    [2]    [3]    [4]    [5]    [6]    [7]    [8]    [9]    [10]   [11]   [12]   [13]   Instructions:
           -      -      -      -     1.00    -     1.00    -      -      -      -      -      -      -     vmulps      %xmm0, %xmm1, %xmm2
           -      -      -     1.00    -     1.00    -      -      -      -      -      -      -      -     vhaddps     %xmm2, %xmm2, %xmm3
           -      -      -     1.00    -     1.00    -      -      -      -      -      -      -      -     vhaddps     %xmm3, %xmm3, %xmm4

       According  to this report, the dot-product kernel has been executed 300 times, for a total
       of 900 simulated instructions. The total number of simulated micro opcodes (uOps) is  also
       900.

       The  report  is  structured  in  three  main  sections.   The first section collects a few
       performance numbers; the goal of this section is to give a  very  quick  overview  of  the
       performance  throughput.  Important  performance  indicators  are IPC, uOps Per Cycle, and
       Block RThroughput (Block Reciprocal Throughput).

       IPC is computed dividing the total number of simulated instructions by the total number of
       cycles.  In  the  absence  of  loop-carried data dependencies, the observed IPC tends to a
       theoretical maximum which can be computed by dividing the  number  of  instructions  of  a
       single iteration by the Block RThroughput.

       Field ‘uOps Per Cycle’ is computed dividing the total number of simulated micro opcodes by
       the total number of cycles. A delta between Dispatch Width and this field is an  indicator
       of  a  performance  issue.  In the absence of loop-carried data dependencies, the observed
       ‘uOps Per Cycle’ should tend to a theoretical maximum throughput which can be computed  by
       dividing the number of uOps of a single iteration by the Block RThroughput.

       Field  uOps  Per  Cycle  is  bounded from above by the dispatch width. That is because the
       dispatch width limits the maximum size of a dispatch group. Both IPC and ‘uOps Per  Cycle’
       are  limited by the amount of hardware parallelism. The availability of hardware resources
       affects the resource pressure distribution, and it limits the number of instructions  that
       can  be  executed  in  parallel  every  cycle.   A  delta  between  Dispatch Width and the
       theoretical maximum uOps per Cycle (computed by dividing the number of uOps  of  a  single
       iteration  by the Block RTrhoughput) is an indicator of a performance bottleneck caused by
       the lack of hardware resources.  In general, the lower the Block RThroughput, the better.

       In this example, uOps  per  iteration/Block  RThroughput  is  1.50.  Since  there  are  no
       loop-carried  dependencies,  the observed uOps Per Cycle is expected to approach 1.50 when
       the number of iterations tends to infinity. The delta between the Dispatch  Width  (2.00),
       and  the  theoretical  maximum  uOp  throughput  (1.50)  is  an indicator of a performance
       bottleneck caused by the lack of hardware resources, and the Resource  pressure  view  can
       help to identify the problematic resource usage.

       The  second  section  of  the  report shows the latency and reciprocal throughput of every
       instruction in the sequence. That section also reports extra information  related  to  the
       number  of  micro  opcodes,  and  opcode  properties  (i.e.,  ‘MayLoad’,  ‘MayStore’,  and
       ‘HasSideEffects’).

       The third section is the Resource pressure view.  This view reports the average number  of
       resource cycles consumed every iteration by instructions for every processor resource unit
       available on the target.  Information is structured in two tables. The first table reports
       the  number  of  resource  cycles  spent  on  average  every  iteration.  The second table
       correlates the resource cycles to the machine instruction in the  sequence.  For  example,
       every  iteration  of  the instruction vmulps always executes on resource unit [6] (JFPU1 -
       floating point pipeline #1), consuming an average of 1 resource cycle per iteration.  Note
       that  on  AMD Jaguar, vector floating-point multiply can only be issued to pipeline JFPU1,
       while horizontal floating-point additions can only be issued to pipeline JFPU0.

       The resource pressure view helps with identifying bottlenecks  caused  by  high  usage  of
       specific  hardware  resources.  Situations with resource pressure mainly concentrated on a
       few resources should, in general, be  avoided.   Ideally,  pressure  should  be  uniformly
       distributed between multiple resources.

   Timeline View
       The  timeline  view  produces  a  detailed  report of each instruction’s state transitions
       through an instruction pipeline.   This  view  is  enabled  by  the  command  line  option
       -timeline.   As  instructions transition through the various stages of the pipeline, their
       states are depicted in the view report.  These states are  represented  by  the  following
       characters:

       • D : Instruction dispatched.

       • e : Instruction executing.

       • E : Instruction executed.

       • R : Instruction retired.

       • = : Instruction already dispatched, waiting to be executed.

       • - : Instruction executed, waiting to be retired.

       Below  is  the  timeline  view  for  a  subset  of  the  dot-product  example  located  in
       test/tools/llvm-mca/X86/BtVer2/dot-product.s and processed by llvm-mca using the following
       command:

          $ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=3 -timeline dot-product.s

          Timeline view:
                              012345
          Index     0123456789

          [0,0]     DeeER.    .    .   vmulps   %xmm0, %xmm1, %xmm2
          [0,1]     D==eeeER  .    .   vhaddps  %xmm2, %xmm2, %xmm3
          [0,2]     .D====eeeER    .   vhaddps  %xmm3, %xmm3, %xmm4
          [1,0]     .DeeE-----R    .   vmulps   %xmm0, %xmm1, %xmm2
          [1,1]     . D=eeeE---R   .   vhaddps  %xmm2, %xmm2, %xmm3
          [1,2]     . D====eeeER   .   vhaddps  %xmm3, %xmm3, %xmm4
          [2,0]     .  DeeE-----R  .   vmulps   %xmm0, %xmm1, %xmm2
          [2,1]     .  D====eeeER  .   vhaddps  %xmm2, %xmm2, %xmm3
          [2,2]     .   D======eeeER   vhaddps  %xmm3, %xmm3, %xmm4

          Average Wait times (based on the timeline view):
          [0]: Executions
          [1]: Average time spent waiting in a scheduler's queue
          [2]: Average time spent waiting in a scheduler's queue while ready
          [3]: Average time elapsed from WB until retire stage

                [0]    [1]    [2]    [3]
          0.     3     1.0    1.0    3.3       vmulps   %xmm0, %xmm1, %xmm2
          1.     3     3.3    0.7    1.0       vhaddps  %xmm2, %xmm2, %xmm3
          2.     3     5.7    0.0    0.0       vhaddps  %xmm3, %xmm3, %xmm4

       The  timeline  view  is  interesting  because  it  shows  instruction state changes during
       execution.  It also gives an idea of how the tool processes instructions executed  on  the
       target, and how their timing information might be calculated.

       The  timeline  view  is  structured  in  two  tables.   The first table shows instructions
       changing state over time (measured in cycles); the second table (named Average Wait times)
       reports  useful  timing  statistics,  which  should  help diagnose performance bottlenecks
       caused by long data dependencies and sub-optimal usage of hardware resources.

       An instruction in the timeline view is identified by a pair of indices,  where  the  first
       index  identifies an iteration, and the second index is the instruction index (i.e., where
       it appears in the code sequence).  Since this example was generated  using  3  iterations:
       -iterations=3, the iteration indices range from 0-2 inclusively.

       Excluding  the  first  and  last  column, the remaining columns are in cycles.  Cycles are
       numbered sequentially starting from 0.

       From the example output above, we know the following:

       • Instruction [1,0] was dispatched at cycle 1.

       • Instruction [1,0] started executing at cycle 2.

       • Instruction [1,0] reached the write back stage at cycle 4.

       • Instruction [1,0] was retired at cycle 10.

       Instruction [1,0] (i.e.,  vmulps  from  iteration  #1)  does  not  have  to  wait  in  the
       scheduler’s  queue for the operands to become available. By the time vmulps is dispatched,
       operands are already available, and pipeline JFPU1 is ready to serve another  instruction.
       So  the  instruction can be immediately issued on the JFPU1 pipeline. That is demonstrated
       by the fact that the instruction only spent 1cy in the scheduler’s queue.

       There is a gap of 5 cycles between the write-back stage and the  retire  event.   That  is
       because  instructions  must  retire in program order, so [1,0] has to wait for [0,2] to be
       retired first (i.e., it has to wait until cycle 10).

       In the example, all instructions are  in  a  RAW  (Read  After  Write)  dependency  chain.
       Register  %xmm2  written  by vmulps is immediately used by the first vhaddps, and register
       %xmm3 written by the first vhaddps is used by the second vhaddps.  Long data  dependencies
       negatively impact the ILP (Instruction Level Parallelism).

       In  the  dot-product  example, there are anti-dependencies introduced by instructions from
       different iterations.  However, those dependencies can be  removed  at  register  renaming
       stage  (at  the  cost  of  allocating  register  aliases, and therefore consuming physical
       registers).

       Table Average Wait times helps diagnose performance issues that are caused by the presence
       of  long  latency  instructions and potentially long data dependencies which may limit the
       ILP.  Note that llvm-mca, by default, assumes at least 1cy between the dispatch event  and
       the issue event.

       When the performance is limited by data dependencies and/or long latency instructions, the
       number of cycles spent while in the ready state is expected to be very small when compared
       with  the  total  number of cycles spent in the scheduler’s queue.  The difference between
       the two counters is a good indicator of how large of an impact data  dependencies  had  on
       the  execution  of  the  instructions.   When performance is mostly limited by the lack of
       hardware resources, the delta between the two counters is small.  However, the  number  of
       cycles  spent  in  the  queue  tends to be larger (i.e., more than 1-3cy), especially when
       compared to other low latency instructions.

   Extra Statistics to Further Diagnose Performance Issues
       The -all-stats command line option enables extra statistics and performance  counters  for
       the dispatch logic, the reorder buffer, the retire control unit, and the register file.

       Below  is an example of -all-stats output generated by  llvm-mca for 300 iterations of the
       dot-product example discussed in the previous sections.

          Dynamic Dispatch Stall Cycles:
          RAT     - Register unavailable:                      0
          RCU     - Retire tokens unavailable:                 0
          SCHEDQ  - Scheduler full:                            272  (44.6%)
          LQ      - Load queue full:                           0
          SQ      - Store queue full:                          0
          GROUP   - Static restrictions on the dispatch group: 0

          Dispatch Logic - number of cycles where we saw N micro opcodes dispatched:
          [# dispatched], [# cycles]
           0,              24  (3.9%)
           1,              272  (44.6%)
           2,              314  (51.5%)

          Schedulers - number of cycles where we saw N instructions issued:
          [# issued], [# cycles]
           0,          7  (1.1%)
           1,          306  (50.2%)
           2,          297  (48.7%)

          Scheduler's queue usage:
          [1] Resource name.
          [2] Average number of used buffer entries.
          [3] Maximum number of used buffer entries.
          [4] Total number of buffer entries.

           [1]            [2]        [3]        [4]
          JALU01           0          0          20
          JFPU01           17         18         18
          JLSAGU           0          0          12

          Retire Control Unit - number of cycles where we saw N instructions retired:
          [# retired], [# cycles]
           0,           109  (17.9%)
           1,           102  (16.7%)
           2,           399  (65.4%)

          Total ROB Entries:                64
          Max Used ROB Entries:             35  ( 54.7% )
          Average Used ROB Entries per cy:  32  ( 50.0% )

          Register File statistics:
          Total number of mappings created:    900
          Max number of mappings used:         35

          *  Register File #1 -- JFpuPRF:
             Number of physical registers:     72
             Total number of mappings created: 900
             Max number of mappings used:      35

          *  Register File #2 -- JIntegerPRF:
             Number of physical registers:     64
             Total number of mappings created: 0
             Max number of mappings used:      0

       If we look at the Dynamic Dispatch Stall Cycles table,  we  see  the  counter  for  SCHEDQ
       reports  272  cycles.  This counter is incremented every time the dispatch logic is unable
       to dispatch a full group because the scheduler’s queue is full.

       Looking at the Dispatch Logic table, we see that the pipeline was only  able  to  dispatch
       two  micro  opcodes 51.5% of the time.  The dispatch group was limited to one micro opcode
       44.6% of the cycles, which  corresponds  to  272  cycles.   The  dispatch  statistics  are
       displayed by either using the command option -all-stats or -dispatch-stats.

       The  next  table,  Schedulers,  presents  a histogram displaying a count, representing the
       number of instructions issued on some  number  of  cycles.   In  this  case,  of  the  610
       simulated  cycles,  single  instructions  were  issued  306 times (50.2%) and there were 7
       cycles where no instructions were issued.

       The Scheduler’s queue usage table shows that the average  and  maximum  number  of  buffer
       entries  (i.e.,  scheduler  queue  entries)  used at runtime.  Resource JFPU01 reached its
       maximum (18 of 18 queue entries). Note that AMD Jaguar implements three schedulers:

       • JALU01 - A scheduler for ALU instructions.

       • JFPU01 - A scheduler floating point operations.

       • JLSAGU - A scheduler for address generation.

       The dot-product is a kernel of  three  floating  point  instructions  (a  vector  multiply
       followed  by  two  horizontal  adds).  That explains why only the floating point scheduler
       appears to be used.

       A full scheduler queue is either caused by data dependency  chains  or  by  a  sub-optimal
       usage  of  hardware resources.  Sometimes, resource pressure can be mitigated by rewriting
       the kernel using  different  instructions  that  consume  different  scheduler  resources.
       Schedulers  with a small queue are less resilient to bottlenecks caused by the presence of
       long data dependencies.  The scheduler statistics  are  displayed  by  using  the  command
       option -all-stats or -scheduler-stats.

       The next table, Retire Control Unit, presents a histogram displaying a count, representing
       the number of instructions retired on some number of cycles.  In this  case,  of  the  610
       simulated  cycles,  two  instructions were retired during the same cycle 399 times (65.4%)
       and there were 109 cycles where no instructions were retired.  The retire  statistics  are
       displayed by using the command option -all-stats or -retire-stats.

       The  last  table presented is Register File statistics.  Each physical register file (PRF)
       used by the pipeline is presented in this table.  In the case of AMD Jaguar, there are two
       register  files,  one for floating-point registers (JFpuPRF) and one for integer registers
       (JIntegerPRF).  The table shows that of the 900 instructions  processed,  there  were  900
       mappings  created.  Since this dot-product example utilized only floating point registers,
       the JFPuPRF was responsible for creating the 900  mappings.   However,  we  see  that  the
       pipeline  only  used  a maximum of 35 of 72 available register slots at any given time. We
       can conclude that the floating point PRF was the only register file used for the  example,
       and that it was never resource constrained.  The register file statistics are displayed by
       using the command option -all-stats or -register-file-stats.

       In this example, we can conclude that the IPC is mostly limited by data dependencies,  and
       not by resource pressure.

   Instruction Flow
       This  section  describes the instruction flow through the default pipeline of llvm-mca, as
       well as the functional units involved in the process.

       The default  pipeline  implements  the  following  sequence  of  stages  used  to  process
       instructions.

       • Dispatch (Instruction is dispatched to the schedulers).

       • Issue (Instruction is issued to the processor pipelines).

       • Write Back (Instruction is executed, and results are written back).

       • Retire (Instruction is retired; writes are architecturally committed).

       The  default pipeline only models the out-of-order portion of a processor.  Therefore, the
       instruction fetch and decode stages  are  not  modeled.  Performance  bottlenecks  in  the
       frontend  are  not diagnosed. llvm-mca assumes that instructions have all been decoded and
       placed into a queue before the simulation start.  Also, llvm-mca  does  not  model  branch
       prediction.

   Instruction Dispatch
       During  the  dispatch  stage,  instructions  are  picked  in program order from a queue of
       already  decoded  instructions,  and  dispatched  in  groups  to  the  simulated  hardware
       schedulers.

       The  size  of  a  dispatch  group  depends  on  the availability of the simulated hardware
       resources.  The processor dispatch width defaults to the value of the IssueWidth in LLVM’s
       scheduling model.

       An instruction can be dispatched if:

       • The size of the dispatch group is smaller than processor’s dispatch width.

       • There are enough entries in the reorder buffer.

       • There are enough physical registers to do register renaming.

       • The schedulers are not full.

       Scheduling  models  can  optionally  specify  which  register  files  are available on the
       processor. llvm-mca uses that information to initialize register file descriptors.   Users
       can  limit  the  number  of  physical  registers  that are globally available for register
       renaming by using the command option -register-file-size.  A value of zero for this option
       means  unbounded.  By  knowing how many registers are available for renaming, the tool can
       predict dispatch stalls caused by the lack of physical registers.

       The number of reorder buffer entries consumed by an instruction depends on the  number  of
       micro-opcodes  specified for that instruction by the target scheduling model.  The reorder
       buffer is responsible for tracking the progress of instructions that are “in-flight”,  and
       retiring  them  in program order.  The number of entries in the reorder buffer defaults to
       the value specified by field MicroOpBufferSize in the target scheduling model.

       Instructions that are dispatched to  the  schedulers  consume  scheduler  buffer  entries.
       llvm-mca  queries the scheduling model to determine the set of buffered resources consumed
       by an instruction.  Buffered resources are treated like scheduler resources.

   Instruction Issue
       Each processor scheduler implements a buffer of instructions.  An instruction has to  wait
       in  the  scheduler’s  buffer until input register operands become available.  Only at that
       point, does the instruction becomes eligible for execution and may be issued  (potentially
       out-of-order) for execution.  Instruction latencies are computed by llvm-mca with the help
       of the scheduling model.

       llvm-mca’s scheduler is designed to simulate multiple processor schedulers.  The scheduler
       is  responsible  for tracking data dependencies, and dynamically selecting which processor
       resources are consumed by instructions.  It delegates the management of processor resource
       units  and resource groups to a resource manager.  The resource manager is responsible for
       selecting  resource  units  that  are  consumed  by  instructions.   For  example,  if  an
       instruction  consumes  1cy  of  a  resource group, the resource manager selects one of the
       available units from the group; by  default,  the  resource  manager  uses  a  round-robin
       selector  to guarantee that resource usage is uniformly distributed between all units of a
       group.

       llvm-mca’s scheduler internally groups instructions into three sets:

       • WaitSet: a set of instructions whose operands are not ready.

       • ReadySet: a set of instructions ready to execute.

       • IssuedSet: a set of instructions executing.

       Depending on the operands availability, instructions that are dispatched to the  scheduler
       are either placed into the WaitSet or into the ReadySet.

       Every  cycle,  the  scheduler  checks if instructions can be moved from the WaitSet to the
       ReadySet, and if instructions from the ReadySet can be issued to the underlying pipelines.
       The algorithm prioritizes older instructions over younger instructions.

   Write-Back and Retire Stage
       Issued  instructions  are  moved  from the ReadySet to the IssuedSet.  There, instructions
       wait until they reach the write-back stage.  At that point,  they  get  removed  from  the
       queue and the retire control unit is notified.

       When instructions are executed, the retire control unit flags the instruction as “ready to
       retire.”

       Instructions are retired  in  program  order.   The  register  file  is  notified  of  the
       retirement  so  that  it  can  free  the  physical  registers  that were allocated for the
       instruction during the register renaming stage.

   Load/Store Unit and Memory Consistency Model
       To simulate an out-of-order execution of memory operations, llvm-mca utilizes a  simulated
       load/store unit (LSUnit) to simulate the speculative execution of loads and stores.

       Each  load  (or  store)  consumes an entry in the load (or store) queue. Users can specify
       flags -lqueue and -squeue to limit the number of entries in  the  load  and  store  queues
       respectively. The queues are unbounded by default.

       The  LSUnit implements a relaxed consistency model for memory loads and stores.  The rules
       are:

       1. A younger load is allowed to pass an older load only if there are no intervening stores
          or barriers between the two loads.

       2. A  younger load is allowed to pass an older store provided that the load does not alias
          with the store.

       3. A younger store is not allowed to pass an older store.

       4. A younger store is not allowed to pass an older load.

       By default, the LSUnit optimistically assumes that  loads  do  not  alias  (-noalias=true)
       store  operations.   Under this assumption, younger loads are always allowed to pass older
       stores.  Essentially, the LSUnit does not attempt to run any  alias  analysis  to  predict
       when loads and stores do not alias with each other.

       Note  that,  in  the  case  of  write-combining  memory,  rule 3 could be relaxed to allow
       reordering of non-aliasing store operations.  That being said, at the moment, there is  no
       way  to  further relax the memory model (-noalias is the only option).  Essentially, there
       is no option to specify  a  different  memory  type  (e.g.,  write-back,  write-combining,
       write-through; etc.) and consequently to weaken, or strengthen, the memory model.

       Other limitations are:

       • The LSUnit does not know when store-to-load forwarding may occur.

       • The LSUnit does not know anything about cache hierarchy and memory types.

       • The LSUnit does not know how to identify serializing operations and memory fences.

       The LSUnit does not attempt to predict if a load or store hits or misses the L1 cache.  It
       only knows if an instruction “MayLoad” and/or “MayStore.”  For loads, the scheduling model
       provides  an  “optimistic”  load-to-use  latency  (which  usually  matches the load-to-use
       latency for when there is a hit in the L1D).

       llvm-mca does not know about serializing operations or memory-barrier  like  instructions.
       The  LSUnit  conservatively  assumes  that  an  instruction  which  has both “MayLoad” and
       unmodeled side effects behaves like a “soft”  load-barrier.   That  means,  it  serializes
       loads  without forcing a flush of the load queue.  Similarly, instructions that “MayStore”
       and have unmodeled side effects are treated like store barriers.  A full memory barrier is
       a  “MayLoad”  and “MayStore” instruction with unmodeled side effects.  This is inaccurate,
       but it is the best that we can do at the moment with the current information available  in
       LLVM.

       A  load/store  barrier  consumes  one entry of the load/store queue.  A load/store barrier
       enforces ordering of loads/stores.  A younger load cannot pass a load  barrier.   Also,  a
       younger store cannot pass a store barrier.  A younger load has to wait for the memory/load
       barrier to execute.  A load/store barrier is “executed” when it becomes the  oldest  entry
       in  the  load/store  queue(s).  That  also  means,  by  construction,  all  of  the  older
       loads/stores have been executed.

       In conclusion, the full set of load/store consistency rules are:

       1. A store may not pass a previous store.

       2. A store may not pass a previous load (regardless of -noalias).

       3. A store has to wait until an older store barrier is fully executed.

       4. A load may pass a previous load.

       5. A load may not pass a previous store unless -noalias is set.

       6. A load has to wait until an older load barrier is fully executed.

AUTHOR

       Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT

       2003-2019, LLVM Project