Provided by: mlpack-bin_2.2.5-1build1_amd64
NAME
mlpack_hmm_train - hidden markov model (hmm) training
SYNOPSIS
mlpack_hmm_train [-h] [-v]
DESCRIPTION
This program allows a Hidden Markov Model to be trained on labeled or unlabeled data. It support three types of HMMs: discrete HMMs, Gaussian HMMs, or GMM HMMs. Either one input sequence can be specified (with --input_file), or, a file containing files in which input sequences can be found (when --input_file and --batch are used together). In addition, labels can be provided in the file specified by --labels_file, and if --batch is used, the file given to --labels_file should contain a list of files of labels corresponding to the sequences in the file given to --input_file. The HMM is trained with the Baum-Welch algorithm if no labels are provided. The tolerance of the Baum-Welch algorithm can be set with the --tolerance option. By default, the transition matrix is randomly initialized and the emission distributions are initialized to fit the extent of the data. Optionally, a pre-created HMM model can be used as a guess for the transition matrix and emission probabilities; this is specifiable with --model_file.
REQUIRED INPUT OPTIONS
--input_file (-i) [string] File containing input observations. --type (-t) [string] Type of HMM: discrete | gaussian | gmm.
OPTIONAL INPUT OPTIONS
--batch (-b) If true, input_file (and if passed, labels_file) are expected to contain a list of files to use as input observation sequences (and label sequences). --gaussians (-g) [int] Number of gaussians in each GMM (necessary when type is 'gmm'). Default value 0. --help (-h) Default help info. --info [string] Get help on a specific module or option. Default value ''. --labels_file (-l) [string] Optional file of hidden states, used for labeled training. Default value ''. --model_file (-m) [string] Pre-existing HMM model file. Default value ''. --seed (-s) [int] Random seed. If 0, 'std::time(NULL)' is used. Default value 0. --states (-n) [int] Number of hidden states in HMM (necessary, unless model_file is specified). Default value 0. --tolerance (-T) [double] Tolerance of the Baum-Welch algorithm. Default value 1e-05. --verbose (-v) Display informational messages and the full list of parameters and timers at the end of execution. --version (-V) Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_model_file (-o) [string] File to save trained HMM to. Default value ''.
ADDITIONAL INFORMATION
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your consult the documentation found at http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK. DISTRIBUTION OF MLPACK. mlpack_hmm_train(16 November 2017)