Provided by: mlpack-bin_2.2.5-1build1_amd64
NAME
mlpack_preprocess_imputer - impute data
SYNOPSIS
mlpack_preprocess_imputer [-h] [-v]
DESCRIPTION
This utility takes a dataset and converts user defined missing variable to another to provide more meaningful analysis The program does not modify the original file, but instead makes a separate file to save the output data; You can save the output by specifying the file name with --output_file (-o). For example, if we consider 'NULL' in dimension 0 to be a missing variable and want to delete whole row containing the NULL in the column-wise dataset, and save the result to result.csv, we could run $ mlpack_preprocess_imputer -i dataset.csv -o result.csv -m NULL -d 0 > -s listwise_deletion
REQUIRED INPUT OPTIONS
--input_file (-i) [string] File containing data,
OPTIONAL INPUT OPTIONS
--custom_value (-c) [double] user_defined custom value Default value 0. --dimension (-d) [int] the dimension to apply imputation Default value 0. --help (-h) Default help info. --info [string] Get help on a specific module or option. Default value ''. --missing_value (-m) [string] User defined missing value Default value ''. --strategy (-s) [string] imputation strategy to be applied. Strategies should be one of 'custom', 'mean', 'median', and ’listwise_deletion'. Default value ''. --verbose (-v) Display informational messages and the full list of parameters and timers at the end of execution. --version (-V) Display the version of mlpack.
OPTIONAL OUTPUT OPTIONS
--output_file (-o) [string] File to save output Default value ''.
ADDITIONAL INFORMATION
ADDITIONAL INFORMATION
For further information, including relevant papers, citations, and theory, For further information, including relevant papers, citations, and theory, consult the documentation found at http://www.mlpack.org or included with your consult the documentation found at http://www.mlpack.org or included with your DISTRIBUTION OF MLPACK. DISTRIBUTION OF MLPACK. mlpack_preprocess_imputer(16 November 2017)