Provided by: otb-bin_6.4.0+dfsg-1_amd64
NAME
otbcli_TrainImagesClassifier - OTB TrainImagesClassifier application
DESCRIPTION
This is the TrainImagesClassifier application, version 5.2.0 Train a classifier from multiple pairs of images and training vector data. Complete documentation: http://www.orfeo-toolbox.org/Applications/TrainImagesClassifier.html Parameters: -progress <boolean> Report progress -io.il <string list> Input Image List (mandatory) -io.vd <string list> Input Vector Data List (mandatory) -io.imstat <string> Input XML image statistics file (optional, off by default) -io.confmatout <string> Output confusion matrix (optional, off by default) -io.out <string> Output model (mandatory) -elev.dem <string> DEM directory (optional, off by default) -elev.geoid <string> Geoid File (optional, off by default) -elev.default <float> Default elevation (mandatory, default value is 0) -sample.mt <int32> Maximum training sample size per class (mandatory, default value is 1000) -sample.mv <int32> Maximum validation sample size per class (mandatory, default value is 1000) -sample.bm <int32> Bound sample number by minimum (mandatory, default value is 1) -sample.edg <boolean> On edge pixel inclusion (optional, off by default) -sample.vtr <float> Training and validation sample ratio (mandatory, default value is 0.5) -sample.vfn <string> Name of the discrimination field (mandatory, default value is Class) -classifier <string> Classifier to use for the training [boost/dt/gbt/ann/bayes/rf/knn] (mandatory, default value is boost) -classifier.boost.t <string> Boost Type [discrete/real/logit/gentle] (mandatory, default value is real) -classifier.boost.w <int32> Weak count (mandatory, default value is 100) -classifier.boost.r <float> Weight Trim Rate (mandatory, default value is 0.95) -classifier.boost.m <int32> Maximum depth of the tree (mandatory, default value is 1) -classifier.dt.max <int32> Maximum depth of the tree (mandatory, default value is 65535) -classifier.dt.min <int32> Minimum number of samples in each node (mandatory, default value is 10) -classifier.dt.ra <float> Termination criteria for regression tree (mandatory, default value is 0.01) -classifier.dt.cat <int32> Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split (mandatory, default value is 10) -classifier.dt.f <int32> K-fold cross-validations (mandatory, default value is 10) -classifier.dt.r <boolean> Set Use1seRule flag to false (optional, off by default) -classifier.dt.t <boolean> Set TruncatePrunedTree flag to false (optional, off by default) -classifier.gbt.w <int32> Number of boosting algorithm iterations (mandatory, default value is 200) -classifier.gbt.s <float> Regularization parameter (mandatory, default value is 0.01) -classifier.gbt.p <float> Portion of the whole training set used for each algorithm iteration (mandatory, default value is 0.8) -classifier.gbt.max <int32> Maximum depth of the tree (mandatory, default value is 3) -classifier.ann.t <string> Train Method Type [reg/back] (mandatory, default value is reg) -classifier.ann.sizes <string list> Number of neurons in each intermediate layer (mandatory) -classifier.ann.f <string> Neuron activation function type [ident/sig/gau] (mandatory, default value is sig) -classifier.ann.a <float> Alpha parameter of the activation function (mandatory, default value is 1) -classifier.ann.b <float> Beta parameter of the activation function (mandatory, default value is 1) -classifier.ann.bpdw <float> Strength of the weight gradient term in the BACKPROP method (mandatory, default value is 0.1) -classifier.ann.bpms <float> Strength of the momentum term (the difference between weights on the 2 previous iterations) (mandatory, default value is 0.1) -classifier.ann.rdw <float> Initial value Delta_0 of update-values Delta_{ij} in RPROP method (mandatory, default value is 0.1) -classifier.ann.rdwm <float> Update-values lower limit Delta_{min} in RPROP method (mandatory, default value is 1e-07) -classifier.ann.term <string> Termination criteria [iter/eps/all] (mandatory, default value is all) -classifier.ann.eps <float> Epsilon value used in the Termination criteria (mandatory, default value is 0.01) -classifier.ann.iter <int32> Maximum number of iterations used in the Termination criteria (mandatory, default value is 1000) -classifier.rf.max <int32> Maximum depth of the tree (mandatory, default value is 5) -classifier.rf.min <int32> Minimum number of samples in each node (mandatory, default value is 10) -classifier.rf.ra <float> Termination Criteria for regression tree (mandatory, default value is 0) -classifier.rf.cat <int32> Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split (mandatory, default value is 10) -classifier.rf.var <int32> Size of the randomly selected subset of features at each tree node (mandatory, default value is 0) -classifier.rf.nbtrees <int32> Maximum number of trees in the forest (mandatory, default value is 100) -classifier.rf.acc <float> Sufficient accuracy (OOB error) (mandatory, default value is 0.01) -classifier.knn.k <int32> Number of Neighbors (mandatory, default value is 32) -rand <int32> set user defined seed (optional, off by default) -inxml <string> Load otb application from xml file (optional, off by default)
EXAMPLES
otbcli_TrainImagesClassifier -io.il QB_1_ortho.tif -io.vd VectorData_QB1.shp -io.imstat EstimateImageStatisticsQB1.xml -sample.mv 100 -sample.mt 100 -sample.vtr 0.5 -sample.edg false -sample.vfn Class -classifier libsvm -classifier.libsvm.k linear -classifier.libsvm.c 1 -classifier.libsvm.opt false -io.out svmModelQB1.txt -io.confmatout svmConfusionMatrixQB1.csv
SEE ALSO
The full documentation for otbcli_TrainImagesClassifier is maintained as a Texinfo manual. If the info and otbcli_TrainImagesClassifier programs are properly installed at your site, the command info otbcli_TrainImagesClassifier should give you access to the complete manual.