Provided by: otb-bin_6.4.0+dfsg-1_amd64 bug

NAME

       otbcli_TrainVectorClassifier - OTB TrainVectorClassifier application

DESCRIPTION

       This  is  the  TrainVectorClassifier  application,  version  5.6.0  Train  a  classifier based on labeled
       geometries and a list of features to consider.

       Complete documentation: http://www.orfeo-toolbox.org/Applications/TrainVectorClassifier.html

   Parameters:
       -progress <boolean>
              Report progress

        -io.stats              <string>         Input XML image statistics file  (optional, off by default)
        -io.confmatout         <string>         Output confusion matrix  (optional, off by default)
        -io.out                <string>         Output model  (mandatory)
        -feat                  <string list>    Field names for training features.  (mandatory, default value is
       )
        -cfield                <string>         Field containing  the  class  id  for  supervision   (mandatory,
       default value is class)
        -layer                 <int32>          Layer Index  (optional, on by default, default value is 0)
        -valid.vd              <string>         Validation Vector Data  (optional, off by default)
        -valid.layer           <int32>          Layer Index  (optional, on by default, default value is 0)
        -classifier                 <string>              Classifier     to     use     for     the     training
       [boost/dt/gbt/ann/bayes/rf/knn] (mandatory, default value is boost)
        -classifier.boost.t    <string>          Boost  Type  [discrete/real/logit/gentle]  (mandatory,  default
       value is real)
        -classifier.boost.w    <int32>          Weak count  (mandatory, default value is 100)
        -classifier.boost.r    <float>          Weight Trim Rate  (mandatory, default value is 0.95)
        -classifier.boost.m    <int32>          Maximum depth of the tree  (mandatory, default value is 1)
        -classifier.dt.max     <int32>          Maximum depth of the tree  (mandatory, default value is 65535)
        -classifier.dt.min      <int32>           Minimum  number  of  samples in each node  (mandatory, default
       value is 10)
        -classifier.dt.ra      <float>          Termination criteria for regression  tree   (mandatory,  default
       value is 0.01)
        -classifier.dt.cat      <int32>          Cluster possible values of a categorical variable into K <= cat
       clusters to find a suboptimal split  (mandatory, default value is 10)
        -classifier.dt.f       <int32>          K-fold cross-validations  (mandatory, default value is 10)
        -classifier.dt.r       <boolean>        Set Use1seRule flag to false  (optional, off by default)
        -classifier.dt.t       <boolean>        Set TruncatePrunedTree flag to false  (optional, off by default)
        -classifier.gbt.w      <int32>          Number of boosting  algorithm  iterations   (mandatory,  default
       value is 200)
        -classifier.gbt.s      <float>          Regularization parameter  (mandatory, default value is 0.01)
        -classifier.gbt.p       <float>           Portion  of  the  whole  training  set used for each algorithm
       iteration  (mandatory, default value is 0.8)
        -classifier.gbt.max    <int32>          Maximum depth of the tree  (mandatory, default value is 3)
        -classifier.ann.t      <string>         Train Method Type [reg/back] (mandatory, default value is reg)
        -classifier.ann.sizes  <string list>    Number of neurons in each intermediate layer  (mandatory)
        -classifier.ann.f      <string>         Neuron  activation  function  type  [ident/sig/gau]  (mandatory,
       default value is sig)
        -classifier.ann.a       <float>          Alpha parameter of the activation function  (mandatory, default
       value is 1)
        -classifier.ann.b      <float>          Beta parameter of the activation function   (mandatory,  default
       value is 1)
        -classifier.ann.bpdw    <float>           Strength  of  the  weight gradient term in the BACKPROP method
       (mandatory, default value is 0.1)
        -classifier.ann.bpms   <float>          Strength of the momentum term (the difference between weights on
       the 2 previous iterations)  (mandatory, default value is 0.1)
        -classifier.ann.rdw    <float>          Initial value  Delta_0  of  update-values  Delta_{ij}  in  RPROP
       method  (mandatory, default value is 0.1)
        -classifier.ann.rdwm     <float>            Update-values   lower  limit  Delta_{min}  in  RPROP  method
       (mandatory, default value is 1e-07)
        -classifier.ann.term   <string>         Termination criteria [iter/eps/all] (mandatory, default value is
       all)
        -classifier.ann.eps    <float>          Epsilon value used  in  the  Termination  criteria   (mandatory,
       default value is 0.01)
        -classifier.ann.iter    <int32>           Maximum  number of iterations used in the Termination criteria
       (mandatory, default value is 1000)
        -classifier.rf.max     <int32>          Maximum depth of the tree  (mandatory, default value is 5)
        -classifier.rf.min     <int32>          Minimum number of samples  in  each  node   (mandatory,  default
       value is 10)
        -classifier.rf.ra       <float>           Termination  Criteria for regression tree  (mandatory, default
       value is 0)
        -classifier.rf.cat     <int32>          Cluster possible values of a categorical variable into K <=  cat
       clusters to find a suboptimal split  (mandatory, default value is 10)
        -classifier.rf.var      <int32>           Size  of the randomly selected subset of features at each tree
       node  (mandatory, default value is 0)
        -classifier.rf.nbtrees <int32>          Maximum number of trees in the forest  (mandatory, default value
       is 100)
        -classifier.rf.acc     <float>          Sufficient accuracy (OOB error)  (mandatory,  default  value  is
       0.01)
        -classifier.knn.k      <int32>          Number of Neighbors  (mandatory, default value is 32)
        -rand                  <int32>          set user defined seed  (optional, off by default)
        -inxml                 <string>         Load otb application from xml file  (optional, off by default)

EXAMPLES

       otbcli_TrainVectorClassifier  -io.vd  vectorData.shp  -io.stats  meanVar.xml  -io.out  svmModel.svm -feat
       perimeter  area  width -cfield predicted

otbcli_TrainVectorClassifier 5.6.0                December 2015                               OTBCLI_BANDMATH(1)